Security Quick-Start HOWTO for Red Hat Linux

Hal Burgiss

hal@foobox.net

v. 1.2, 2002-07-21

Revision History

Revision v. 1.2 2002-07-21 Revised by: hb
A few small additions, and fix the usual broken links.

Revisionv. 1.1 2002-02-06 Revised by: hb
A few fixes, some additions and many touch—ups from the original.

Revision v. 1.0 2001-11-07 Revised by: hb

Initial Release.

This document is a an overview of the basic steps required to secure a Linux installation from intrusion. It is
intended to be an introduction. This is a Red Hat specific version of this document.

Security Quick—Start HOWTO for Red Hat Linux

Table of Contents

T @ 0 1Y/ 1T) PO PPPPPPPP :
R O 1=Y0 [1 £

ST B Il =X [0 A1) (T T T PP

1.6.New VersionsandChaNGEIOQGcvvviiiiiiiiiieeeeeeee et 3
A =0 | o= o PP R PO UTPRRRRIN :

R 0T (=X (o PR PTTRT

2.1. The OptimUMCONTIQUIALION.ciiieiie i eee e bbbt b s e s s s s s s s s s s ssssnesseeesneeeees 6
A oY (0] (oA A LR b= A TR TR 6

BT YY) (=) 11 16 L1 S PSPPSR PPPPPPPR 4
3.2. TheDangerZone(Or rOOT M3 PIBASI)......uuuuuuuuuuuuruurrunururrrrreerereaeearerrrrerrere—asraeeeessrrsrrreseesraerrreereeeeee 9
3.3 . StOPPINGSEIVICESo ————— 9

3.3.1.StoppINAINIt SEIVICES......ccoeee e, 10
I I 111=) (o [T 11

T I (1 01<] (o [T 13

3.3. 4. WhHENAIL EISEFAIIS.......un it e e e et e e e e e e e e e 14
G B (=Y o) 10 KPP 1!
3.5.SummanandConclusiongor StEPL.......ccoooiiiiii e ——— 16

S (=] 0 124 U oo = L] T PSPPI 1
4.1. SummaryandConclUSIONFOr STEP2.......ccvviviiiiiiiiiiiiieee e 17

5. Step3: Firewalls and SettiNng ACCESSPONICIES.cviiiiiiiiiiiiiieieeeee et 19
LT IS Y1 - 1< | 1
5.2.PackefFilters—— IpchainsandIptables..............ooo s 19

L0 [o Tod T 11 PPN 20
B5.2.2.0PtaADIES ... —— 23
5.2.3.RedHatFirewall ConfigurationTOOoIS............cccooviiiiiiiiiiiieeeee e 25
LG T e o111V ir= 0 0 1= 1 11 01T 7=) 0 PSPPIt 26
LTI (1 1= (o 28

LT B o T 1T 1115 PP 2
LTSI 16) 1= 2
oI oM [T YA To [T F= I o]] [ToF= 1 uT] a F FSPPPRPPPP 30
BT VEIVING oo —— 3

oo 7 0T [11110 PP 3
o RN AT (TS = o TP 34

Security Quick—Start HOWTO for Red Hat Linux

Table of Contents

A CT=T =T =L N oL PSPPSR 4
B ADDENAIX 1o Z
8.1.ServersPOrtS.ANUPACKELS.i it e e 43
T OT0 1111110 8] 0 £ T 45
TR L= 53 7= I 1 (0 = A€
TR T @ LYY AV 1) 48
8.3.2. POrtandPIrOCESIDWNELS.ceeveiieieeiie ettt et ettt e ettt e e e e e e e e et eesseb e e s sebaeeeeesaaaeeeens 52
8.4 AttACKSANATIIEALS.u i ciieee ettt e e e e e e e et et e e e et e e e e e e e e s eeba e e s eeban e eeeernns 56
8.4.1. POrtSCANSANAPIODES.coevei e 56
R {0 10 141X 57
8.4.3. WOrMSANAZOMDIEScuuuieiietie et e ettt e e et e e e e e e e e ettt e e e seab s e s seaaaeeessabaaeeeees 57
o B Yo 0] T [0 1= PP 58
8.4.5.8SP00fEAPS.o ———————— 58
o T IF= L0 (1 (=10 AN 1 7= (o PP PP 58
8.4.7.Denial of Service(DOS).........covviiiiiiieee e, 59
LT R o =T AU | = 0] (0 = 59
BL4.9.VIIUSES.ottt e et e e e e e et e et e e e e e e et ata et et e e e 60
TS T I 6
8.6. EAItING TEXEFIIES.....eeiiiiiiiiiiieieeee e, 62
o TR A 1 11= o PSS 6
Lot TNV AST o1 1 [0] 110 0 PSP UPSPPPPPPPPP 6¢
8.9. SECUIBAREINALIVES.vu ettt ettt et e e et e e et e e e e et e e e e e et e e e e et e e s seba e e s seban e eeseernns 70
8.10.IpchainsandIptabl@SREAUX.........uuuiuiiiiiiiiiiiiiiiii e e e e e e e e e e e e e e eeeeeeeaeeaaeeaaees 70
8.10.1.PCHAINSIL. ... —————————— 70
8.10.2.0PtADIESIL. ...coeeeieeeeeeeeeeeeeee e 74
o T 0 TG TE YU 1] 010 T Y N 78
T O I o) = o) [Ty a1 T 01 PP 79

1. Introduction
1.1. Why me?

Who should be reading this document and why should the average Linux user care about security? Those |
to Linux, or unfamiliar with the inherent security issues of connecting a Linux system to large networks like
Internet should be reading. "Security" is a broad subject with many facets, and is covered in much more de
in other documents, books, and on various sites on the Web. This document is intended to be an introductic
to the most basic concepts as they relate to Red Hat Linux, and as a starting point only.

Iptables Weekly Log Summary from Jul 15 04:24:13 to Jul 22 04:06:00
Blocked Connection Attempts:

Rejected tcp packets by destination port

port count
111 19
53 12

21 9

515 9
27374 8
443 6
1080 2
1138 1

Rejected udp packets by destination port

port count
137 34
22 1

The above is real, live data from a one week period for my home LAN. Much of the above would seem to b
specifically targeted at Linux systems. Many of the targeted "destination" ports are used by well known
Linux and Unix services, and all may be installed, and possibly even running, on your system.

The focus here will be on threats that are shared by all Linux users, whether a dual boot home user, or larg
commercial site. And we will take a few, relatively quick and easy steps that will make a typical home
Desktop system or small office system running Red Hat Linux reasonably safe from the majority of outside
threats. For those responsible for Linux systems in a larger or more complex environment, you'd be well
advised to read this, and then follow up with additional reading suitable to your particular situation. Actually
this is probably good advice for everybody.

We will assume the reader knows little about Linux, networking, TCP/IP, and the finer points of running a

server Operating System like Linux. We will also assume, for the sake of this document, that all local users
are "trusted" users, and won't address physical or local network security issues in any detail. Again, if this i

1. Introduction 1

Security Quick—Start HOWTO for Red Hat Linux

not the case, further reading is strongly recommended.
The principles that will guide us in our quest are:

» There is no magic bullet. There is no one single thing we can do to make us secure. It is not that
simple.

 Security is a process that requires maintenance, not an objective to be reached.

» There is no 100% safe program, package or distribution. Just varying degrees of insecurity.

The steps we will be taking to get there are:

« Step 1: Turn off, and perhaps uninstall, any and all unnecessary services.

 Step 2: Make sure that any services that are installed are updated and patched to the current, safe
version —— and then stay that way. Every server application has potential exploits. Some have just
been found yet.

« Step 3: Limit connections to us from outside sources by implementing a firewall and/or other
restrictive policies. The goal is to allow only the minimum traffic necessary for whatever our
individual situation may be.

« Awareness. Know your system, and how to properly maintain and secure it. New vulnerabilities are
found, and exploited, all the time. Today's secure system may have tomorrow's as yet unfound
weaknesses.

If you don't have time to read everything, concentrate on Steps 1, 2, and 3. This is where the meat of the
subject matter is. The Appendix has a lot of supporting information, which may be helpful, but may not be
necessary for all readers.

1.2. Notes

This is a Red Hat specific version of this document. The included examples are compatible with Red Hat 7.
and later. Actually, most examples should work with earlier versions of Red Hat as well. Also, this documen
should be applicable to other distributions that are Red Hat derivatives, such as Mandrake, Conectiva, etc.

Overwhelmingly, the content of this document is not peculiar to Red Hat. The same rules and methodologie
apply to other Linuxes. And indeed, to other Operating Systems as well. But each may have their own way
doing things —— the file names and locations may differ, as may the system utilities that we rely on. It is the
differences that make this document a "Red Hat" version.

1.3. Copyright

Security—Quickstart HOWTO for Red Hat Linux

Copyright © 2001 Hal Burgiss.

This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either version 2 of the License, or (at your option) &
later version.

1.2. Notes 2

Security Quick—Start HOWTO for Red Hat Linux

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You can get a copy of the GNU GPL at at http://www.gnu.org/copyleft/gpl.html.

1.4. Credits

Many thanks to those who helped with the production of this document.

« Bill Staehle, who has done a little bit of everything: ideas, editing, encouragement, and suggestions,
many of which have been incorporated. Bill helped greatly with the content of this document.

« Others who have contributed in one way or another: Dave Wreski, lan Jones, Jacco de Leeuw, and
Indulis Bernsteins.

 Various posters on comp.os.linux.security, a great place to learn about Linux and security.

* The Netfilter Development team for their work on iptables and connection tracking, state of the art
tools with which to protect our systems.

1.5. Disclaimer

The author accepts no liability for the contents of this document. Use the concepts, examples and other
content at your own risk. As this is a new document, there may be errors and inaccuracies. Hopefully these
are few and far between. Corrections and suggestions are welcomed.

This document is intended to give the new user a starting point for securing their system while it is connecte
to the Internet. Please understand that there is no intention whatsoever of claiming that the contents of this
document will necessarily result in an ultimately secure and worry—free computing environment. Security is
complex topic. This document just addresses some of the most basic issues that inexperienced users shou
be aware of.

The reader is encouraged to read other security related documentation and articles. And to stay abreast of
security issues as they evolve. Security is not an objective, but an ongoing process.

1.6. New Versions and Changelog

The current official version can always be found at

http://www.tldp.org/HOWTO/Security—Quickstart—-Redhat-HOWTO/. Pre-release versions can be found at
http://feenix.burgiss.net/ldp/quickstart=rh/.

Other formats, including PDF, PS, single page HTML, may be found at the Linux Documentation HOWTO
index page_:_http://tldp.org/docs.html#howto.

Changelog:

Version 1.2: Clarifications on example firewall scripts, and small additions to 'Have | been Hacked'. Note on
Zonealarm type applications. More on the use of "chattr" by script kiddies, and how to check for this. Other

1.4. Credits 3

http://www.gnu.org/copyleft/gpl.html
http://www.tldp.org/HOWTO/Security-Quickstart-Redhat-HOWTO/
http://feenix.burgiss.net/ldp/quickstart-rh/
http://tldp.org/docs.html#howto

Security Quick—Start HOWTO for Red Hat Linux

small additions and clarifications.

Version 1.1: Various corrections, amplifications and numerous mostly small additions. Too many to list. Oh
yea, learn to spell Red Hat correctly ;-)

Version 1.0: This is the initial release of this document. Comments welcomed.

1.7. Feedback

Any and all comments on this document are most welcomed. Please make sure you have the most current
version before submitting corrections or suggestions! These can be skal@foobox.net>.

1.7. Feedback 4

mailto:hal@foobox.net

2. Foreword

Before getting into specifics, let's try to briefly answer some questions about why we need to be concerned
about security in the first place.

It is easy to see why an e—commerce site, an on-line bank, or a government agency with sensitive docume
would be concerned about security. But what about the average user? Why should even a Linux home
Desktop user worry about security?

Anyone connected to the Internet is a target, plain and simple. It makes little difference whether you have a
part-time dialup connection, or a full-time connection, though full-time connections make for bigger targets
Larger sites make for bigger targets too, but this does not let small users off the hook since the "small

user" may be less skilled and thus an easier victim. Red Hat, and Red Hat based distributions, tend to mak
for bigger targets as well, since the installed user base is so large.

There are those out there that are scanning just for easy victims all the time. If you start logging unwanted
connection attempts, you will see this soon enough. There is little doubt that many of these attempts are
maliciously motivated and the attacker, in some cases, is looking for Linux boxes to crack. Does someone ¢
the other side of the globe really want to borrow my printer?

What do they want? Often, they just may want your computer, your IP address, and your bandwidth. Then
they use you to either attack others, or possibly commit crimes or mischief and are hiding their true identity
behind you. This is an all too common scenario. Commercial and high—profile sites are targeted more direc
and have bigger worries, but we all face this type of common threat.

With a few reasonable precautions, Red Hat Linux can be very secure, and with all the available tools, mak
for a fantastically fun and powerful Internet connection or server. Most successful break—ins are the result
ignorance or carelessness.

The bottom line is:

* Do you want control of your own system or not?

« Do you want to unwittingly participate in criminal activity?

« Do you want to be used by someone else?

» Do you want to risk losing your Internet connection?

« Do you want to have to go through the time consuming steps of reclaiming your system?
« Do you want to chance the loss of data on your system?

These are all real possibilities, unless we take the appropriate precautions.

If you are reading this because you have already been broken
into, or suspect that you have, you cannot trust any of your
system utilities to provide reliable information. And the
suggestions made in the next several sections will not help
you recover your system. Please jump straight toHhee |

been Hacked? section, and read that first.

2. Foreword 5

Security Quick—Start HOWTO for Red Hat Linux

2.1. The Optimum Configuration

Ideally, we would want one computer as a dedicated firewall and router. This would be a bare bones
installation, with no servers running, and only the required services and components installed. The rest of ¢
systems would connect via this dedicated router/firewall system. If we wanted publicly accessible servers
(web, malil, etc), these would be in a "DMZ" (De—-militarized Zone). The router/firewall allows connections
from outside to whatever services are running in the DMZ by "forwarding" these requests, but it is segregat
from the rest of the internal network (aka LAN) otherwise. This leaves the rest of the internal network in
fairly secure isolation, and relative safety. The "danger zone" is confined to the DMZ.

But not everyone has the hardware to dedicate to this kind of installation. This would require a minimum of
two computers. Or three, if you would be running any publicly available servers (hot a good idea initially). O
maybe you are just new to Linux, and don't know your way around well enough yet. So if we can't do the
ideal installation, we will do the next best thing.

2.2. Before We Start

Before we get to the actual configuration sections, a couple of notes.

With Linux, there is always more than one way to perform any task. For the purposes of our discussion, we
will have to use as generic set of tools as we can. Unfortunately, GUI tools don't lend themselves to this type
of documentation. So we will be using text based, command line tools for the most part. Red Hat does
provide various GUI utilities, feel free to substitute those in appropriate places.

The next several sections have been written such that you can perform the recommended procedures as y
read along. This is the "Quick Start" in the document title!

To get ready, what you will need for the configuration sections below:

« A text editor. There are many available. If you use a file manager application like gmc or nautilus, i
probably has a built in editor. This will be fine. pico and mcedit are two relatively easy to use editors
if you don't already have a favorite. There is a quick guideikb_editors in the Appendix that might
help you get started. It is always a good idea to make a back up copy, before editing system
configuration files.

* For non—-GUI editors and some of the commands, you will also need a terminal window opened.
xterm, rxvt, and gnome-terminal all will work, as well as others.

We'll be using a hypothetical system here for examples with the hosthname "bigcat”. Bigcat is a Linux desktc
with a fresh install of the latest/greatest Red Hat running. Bigcat has a full-time, direct Internet connection
Even if your installation is not so "fresh", don't be deterred. Better late than never.

2.1. The Optimum Configuration 6

3. Step 1: Which services do we really need?

In this section we will see which services are running on our freshly installed system, decide which we reall
need, and do away with the rest. If you are not familiar with how servers and TCP connections work, you
may want to read the section ggrvers and ports in the Appendix first. If not familiar with the netstat utility,
you may want to read a quick overviefit beforehand. There is also a section in the Appendix on ports, and
corresponding services. You may want to look that over too.

Our goal is to turn off as many services as possible. If we can turn them all off, or at least off to outside
connections, so much the better. Some rules of thumb we will use to guide us:

« It is perfectly possible to have a fully functional Internet connection with no servers running that are
accessible to outside connections. Not only possible, but desirable in many cases. The principle her
is that you will never be successfully broken into via a port that is not opened because no server is
listening on it. No server == no port open == not vulnerable. At least to outside connections.

« If you don't recognize a particular service, chances are good you don't really need it. We will assum
that and so we'll turn it off. This may sound dangerous, but is a good rule of thumb to go by.

« Some services are just not intended to be run over the Internet —— even if you decide it is something
you really do need. We'll flag these as dangerous, and address these in later sections, should you
decide you do really need them, and there is no good alternative.

3.1. System Audit

So what is really running on our system anyway? Let's not take anything for granted about what "should" be
running, or what we "think" is running.

Which services get installed and started will vary greatly depending on which version of Red Hat, and whict
installation options were chosen. Earlier releases were very much prone to start many services and then let
the user figure out which ones were needed, and which ones weren't. Recent versions are much more
cautious. But this makes providing a ready made list of likely services impossible. Not to worry, as we
shouldn't trust what is supposed to be running anyway. What we need to do is list for ourselves all running
services.

Now open an xterm, and su to root. You'll need to widen the window wide so the lines do not wrap. Use this
command: netstat —tap |grep LISTEN. This will give us a list of all currently running servers as

indicated by the keyword LISTEN, along with the "PID" and "Program Name" that started each particular
service.

netstat —tap |grep LISTEN

*.exec * % LISTEN 988/inetd
*login *ix LISTEN 988/inetd
*:shell ** LISTEN 988/inetd
*printer xox LISTEN 988/inetd
*:time * % LISTEN 988/inetd
*x11 e LISTEN 1462/X
*:http ey LISTEN 1078/httpd

bigcat:domain *ix LISTEN 956/named
bigcat:domain *ix LISTEN 956/named
*:ssh *o* LISTEN 972/sshd

*:auth *o LISTEN 388/in.identd

3. Step 1: Which services do we really need? 7

Security Quick—Start HOWTO for Red Hat Linux

*:telnet *o LISTEN 988/inetd

*:finger *;x LISTEN 988/inetd

*:sunrpc *x LISTEN 1290/portmap

*ftp ** LISTEN 988/inetd

*.smtp *x LISTEN 1738/sendmail: accepting connections
*:1694 *x LISTEN 1319/rpc.mountd

*:netbios—ssn *o* LISTEN 422/smbhd

Red Hat 7.x and Mandrake 8.x and later users will have xinetd in place of inetd. Note the first three
columns are cropped above for readability. If your list is as long as the example, you have some work ahea
of you! It is highly unlikely that you really need anywhere near this number of servers running.

Please be aware that the example above is just one of many, many possible system configurations. Yours
probably does look very different.

You don't understand what any of this is telling you? Hopefully then, you've reaeltsitat tutorial in the
Appendix, and understand how it works. Understanding exactly what each server is in the above example,
and what it does, is beyond the scope of this document. You will have to check your system's documentatic
(e.g. Installation Guide, man pages, etc) if that service is important to you. For example, does "exec", "logi
and "shell" sound important? Yes, but these are not what they may sound like. They are actually rexec,
rlogin, and rsh, the "r" (for remote) commands. These are antiquated, unnecessary, and in fact, are very

dangerous if exposed to the Internet.

Let's make a few quick assumptions about what is necessary and unnecessary, and therefore what goes ai
what stays on bigcat. Since we are running a desktop on bigcat, X11 of course needs to stay. If bigcat wer
dedicated server of some kind, then X11 would be unnecessary. If there is a printer physically attached, the
printer (Ip) daemon should stay. Otherwise, it goes. Print servers may sound harmless, but are potential
targets too since they can hold ports open. If we plan on logging in to bigcat from other hosts, sshd (Secur
SHell Daemon) would be necessary. If we have Microsoft hosts on our LAN, we probably want Samba, so
smbd should stay. Otherwise, it is completely unnecessary. Everything else in this example is optional and
not required for a normally functioning system, and should probably go. See anything that you don't
recognize? Not sure about? It goes!

To sum up: since bigcat is a desktop with a printer attached, we will need "x11", "printer". bigcat is on a LAl
with MS hosts, and shares files and printing with them, so "netbios—ssn" (smbd) is desired. We will also ne
"ssh" so we can login from other machines. Everything else is unnecessary for this particular case.

Nervous about this? If you want, you can make notes of any changes you make or save the list of serversy
got from netstat, with this command: netstat —tap |grep LISTEN > ~/services.Ist. That
will save it your home directory with the name of "services.Ist" for future reference.

This is to not say that the ones we have decided to keep are inherently safe. Just that we probably need the
So we will have to deal with these via firewalling or other means (addressed below).

It is worth noting that the telnet and ftp daemons in the above example are servers, aka "listeners”. These
accept incoming connections to you. You do not need, or want, these just to use ftp or telnet clients. For
instance, you can download files from an FTP site with just an ftp client. Running an ftp server on your end
is not required at all, and has serious security implications.

3. Step 1: Which services do we really need? 8

Security Quick—Start HOWTO for Red Hat Linux

There may be individual situations where it is desirable to make exceptions to the conclusions reached abo
See below.

3.2. The Danger Zone (or rO0t m3 pl34s3)

The following is a list of services that should not be run over the Internet. Either disable these (see below),
uninstall, or if you really do need these services running locally, make sure they are the current, patched
versions and that they are effectively firewalled. And if you don't have a firewall in place now, turn them off
until it is up and verified to be working properly. These are potentially insecure by their very nature, and as
such are prime cracker targets.

* NFS (Network File System) and related services, including nfsd, lockd, mountd, statd, portmapper,
etc. NFS is the standard Unix service for sharing file systems across a network. Great system for
LAN usage, but dangerous over the Internet. And its completely unnecessary on a stand alone
system.

* rpc.* services, Remote Procedure Call.*, typically NFS and NIS related (see above).

* Printer services (Ipd).

» The so—called r* (for "remote”, i.e. Remote SHell) services: rsh, rlogin, rexec, rcp etc. Unnecessar)
insecure and potentially dangerous, and better utilities are available if these capabilities are needed
ssh will do everything these command do, and in a much more sane way. See the man pages for e
if curious. These will probably show in netstat output without the "r": rlogin will be just "login", etc.

« telnet server. There is no reason for this anymore. Use sshd instead.

« ftp server. There are better, safer ways for most systems to exchange files like scp or via http (see
below). ftp is a proper protocol only for someone who is running a dedicated ftp server, and who ha
the time and skill to keep it buttoned down. For everyone else, it is potentially big trouble.

* BIND (named), DNS server package. With some work, this can be done without great risk, but is no
necessary in many situations, and requires special handling no matter how you do it. See the sectio
on Exception®nd special handling fandividual applications.

» Mail Transport Agent, aka "MTA" (sendmail, exim, postfix, gmail). Most installations on single
computers will not really need this. If you are not going to be directly receiving mail from Internet
hosts (as a designated MX box), but will rather use the POP server of your ISP, then it is not neede
You may however need this if you are receiving mail directly from other hosts on your LAN, but
initially it's safer to disable this. Later, you can enable it over the local interface once your firewall
and access policies have been implemented.

This is not necessarily a definitive list. Just some common services that are sometimes started on default F
Hat installations. And conversely, this does not imply that other services are inherently safe.

3.3. Stopping Services

The next step is to find where each server on our kill list is being started. If it is not obvious from the
netstat output, use ps, find, grep or locate to find more information from the "Program name" or "PID" info
in the last column. There is examples of this inRhecess Owner section in the netstat Tutorial of the
Appendix. If the service name or port number do not look familiar to you, you might get a real brief
explanation in your /etc/services file.

chkconfig is a very useful command for controlling services that are started via init scripts (see example

3.2. The Danger Zone (or rO0t m3 pl34s3) 9

Security Quick—Start HOWTO for Red Hat Linux

below). Also, where xinetd is used, it can control those services as well. chkconfig can tell us what services
the system is configured to run, but not necessarily all services that are indeed actually running. Or what
services may be started by other means, e.g. from rc.local. It is a configuration tool, more than a real time
system auditing too.

Skeptical that we are going to break your system, and the pieces won't go back together again? If so, take 1
approach: turn off everything listed above in "The Danger Zone", and run your system for a while. OK? Try
stopping one of the ones we found to be "unnecessary" above. Then, run the system for a while. Keep
repeating this process, until you get to the bare minimum. If this works, then make the changes permanent
(see below).

The ultimate objective is not just to stop the service now, but to make sure it is stopped permanently! So
whatever steps you take here, be sure to check after your next reboot.

There are various places and ways to start system services. Let's look at the most common ways this is dol
and is probably how your system works. System services are typically either started by "init" scripts, or by
inetd (or its replacement xinetd) on most distributions.

3.3.1. Stopping Init Services

Init services are typically started automatically during the boot process, or during a runlevel change. There |
a naming scheme that uses symlinks to determine which services are to be started, or stopped, at any give
runlevel. The scripts themselves should be in /etc/init.d/ (or possibly /etc/rc.d/init.d/ for

older versions of Red Hat).

You can get a listing of these scripts:

Is =l /etc/rc.d/init.d/ | less

To stop a running service now, as root:

letc/init.d/<$SERVICE_NAME> stop

Where "$SERVICE_NAME" is the name of the init script, which is often, but not always, the same as the
service name itself. Older Red Hat versions may use the path /etc/rc.d/init.d/ instead.

This only stops this particular service now. It will restart again on the next reboot, or runlevel change, unles
additional steps are taken. So this is really a two step process for init type services.

chkconfig can be used to see what services are started at each runlevel, and to turn off any unneeded serv
To view all services under its control, type this command in an xterm:

chkconfig ——list | less

3.3.1. Stopping Init Services 10

Security Quick—Start HOWTO for Red Hat Linux

To view only the ones that are "on":

chkconfig —-list | grep "\bon\b" | less

The first column is the service name, and the remaining columns are the various runlevels. We need gener
only worry about runlevels 3 (boot to text console login) and 5 (boot straight to X11 login). xinetd services
won't have columns, since that aspect would be controlled by xinetd itself.

Examples of commands to turn services "off":

chkconfig portmapper off
chkconfig nfs off

chkconfig telnet off

chkconfig rlogin off

Note that the last two are xinetd services. A very easy and nifty tool to use! Red Hat also includes ntsysv ar
tksysv (GUI) for runlevel and service configuration. See the man pages for additional command line options

Another option here is to uninstall a package if you know you do not need it. This is a pretty sure—fire,
permanent fix. This also alleviates the potential problem of keeping all installed packages updated and
current (Step 2). RPM makes it very easy to re—install a package should you change your mind.

To uninstall packages with RPM:

rpm —ev telnet-server rsh rsh—server

The above command would uninstall the "telnet server” package (but not telnet client!), "rsh” client and "rsh
server" packages in one command. Red Hat also includes gnorpm, a GUI RPM management utility which ¢
do this as well.

3.3.2. Inetd

Inetd is called a "super—-daemon" because it is used to spawn sub—daemons. inetd itself will generally be
started via init scripts, and will "listen" on the various ports as determined by which services are enable in it
configuration file, /etc/inetd.conf. Any service listed here will be under the control of inetd.

Likewise, any of the listening servers in netstat output that list "inetd" in the last column under "Program
Name", will have been started by inetd. You will have to adjust the inetd configuration to stop these
services. xinetd is an enhanced inetd replacement, and is configured differently (see next section below).

Below is a partial snippet from a typical inetd.conf. Any service with a "#" at the beginning of the line is
"commented out", and thus ignored by inetd, and consequently disabled.

#
inetd.conf This file describes the services that will be available
through the INETD TCP/IP super server. To re—configure

3.3.2. Inetd 11

Security Quick—Start HOWTO for Red Hat Linux

the running INETD process, edit this file, then send the
INETD process a SIGHUP signal.

#

Version: @(#)/etclinetd.conf 3.10 05/27/93

#

Authors: Original taken from BSD UNIX 4.3/TAHOE.

Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>

#

Modified for Debian Linux by lan A. Murdock <imurdock@shell.portal.com>
#

Echo, discard, daytime, and chargen are used primarily for testing.
#

To re-read this file after changes, just do a 'killall -HUP inetd'
#

#echo stream tcp nowait root internal

#echo dgram udp wait root internal

#discard stream tcp nowait root internal

#discard dgram udp wait root internal

#daytime stream tcp nowait root internal

#daytime dgram udp wait root internal

#chargen stream tcp nowait root internal

#chargen dgram udp wait root internal

time stream tcp nowait root internal

#

These are standard services.

#

#ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd —I —a
#telnet stream tcp nowait root /usr/shin/tcpd in.telnetd
#

Shell, login, exec, comsat and talk are BSD protocols.

#

#shell stream tcp nowait root /usr/shin/tcpd in.rshd
#login stream tcp nowait root /usr/sbin/tcpd in.rlogind
#exec stream tcp nowait root /usr/sbin/tcpd in.rexecd
#comsat dgram udp wait root /usr/sbin/tcpd in.comsat
#talk dgram udp wait root /usr/shin/tcpd in.talkd
#ntalk dgram udp wait root /usr/shin/tcpd in.ntalkd
#dtalk stream tcp wait nobody /usr/shin/tcpd in.dtalkd

#

Pop and imap mail services et al

#

#pop—-2 stream tcp nowait root /usr/shin/tcpd ipop2d
pop—3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#imap stream tcp nowait root /usr/sbin/tcpd imapd
#

The Internet UUCP service.

#

#uucp stream tcp nowait uucp /usr/shin/tcpd /ustr/lib/uucp/uucico -I
#

<snip>

The above example has two services enabled: time and pop3. To disable these, all we need is to open the
with a text editor, comment out the two services with a "#", save the file, and then restart inetd (as root):

letc/rc.d/init.d/inetd restart

3.3.2. Inetd 12

Security Quick—Start HOWTO for Red Hat Linux

Check your logs for errors, and run netstat again to verify all went well.

A quicker way of getting the same information, using grep:

$ grep —v "#' /etc/inetd.conf
time stream tcp nowait root internal
pop—3 stream tcp nowait root /usr/shin/tcpd ipop3d

Again, do you see anything there that you don't know what it is? Then in all likelihood you are not using it,
and it should be disabled.

Unlike the init services configuration, this is a lasting change so only the one step is required.
Let's expose one myth that gets tossed around: you shouldn't disable a service by commenting out, or

removing, entries from /etc/services. This may have the desired effect in some cases, but is not the
right way to do it, and may interfere with the normal operation of other system utilities.

3.3.3. Xinetd

xinetd is an inetd replacement with enhancements. Red Hat includes xinetd with 7.0 and later releases. It
essentially serves the same purpose as inetd, but the configuration is different. The configuration can be in
file /etc/xinetd.conf, or individual files in the directory /etc/xinetd.d/. Configuration of

individual services will be in the individual files under /etc/xinetd.d/*. Turning off xinetd services is

done by either deleting the corresponding configuration section, or file. Or by using your text editor and
simply setting disable = yes for the appropriate service. Or by using chkconfig. Then, xinetd will need

to be restarted. See man xinetd and man xinetd.conf for syntax and configuration options. A sample

xinetd configuration:

default: on
description: The wu—ftpd FTP server serves FTP connections. It uses \
normal, unencrypted usernames and passwords for authentication.
service ftp
{

disable =no

socket_type = stream

wait =no

user = root

server = /usr/sbin/in.ftpd

server_args =-l-a

log_on_success += DURATION USERID

log_on_failure += USERID

nice =10
}

You can get a quick list of enabled services:

$ grep disable /etc/xinetd.d/* [grep no
/etc/xinetd.d/finger: disable = no
/etc/xinetd.d/rexec: disable = no

3.3.3. Xinetd 13

Security Quick—Start HOWTO for Red Hat Linux

/etc/xinetd.d/rlogin: disable = no
letc/xinetd.d/rsh: disable = no
/etc/xinetd.d/telnet: disable = no
/etc/xinetd.d/wu—ftpd: disable = no

At this point, the above output should raise some red flags. In the overwhelming majority of systems, all the
above can be disabled without any adverse impact. Not sure? Try it without that service. After disabling
unnecessary services, then restart xinetd:

letc/rc.d/init.d/xinetd restart

3.3.4. When All Else Fails

OK, if you can't find the "right" way to stop a service, or maybe a service is being started and you can't find
how or where, you can "kill" the process. To do this, you will need to know the PID (Process I.D.). This can
be found with ps, top, fuser or other system utilities. For top and ps, this will be the number in the first
column. See thBort and Process Owner section in the Appendix for examples.

Example (as root):

kill 1163

Then run top or ps again to verify that the process is gone. If not, then:

kill -KILL 1163

Note the second "KILL" in there. This must be done either by the user who owns the process, or root. Now
go find where and how this process got started ;-)

The /proc filesystem can also be used to find out more information about each process. Armed with the
PID, we can find the path to a mysterious process:

$ /bin/ps ax|grep tcpgate
921? S 0:00 tcpgate

#Is —| /proc/921/exe
Irwxrwxrwx 1 root root O July 21 12:11 /proc/921/exe —> [usr/local/bin/tcpgate

3.3.4. When All Else Fails 14

Security Quick—Start HOWTO for Red Hat Linux

3.4. Exceptions

Above we used the criteria of turning off all unnecessary services. Sometimes that is not so obvious. And
sometimes what may be required for one person's configuration is not the same for another's. Let's look at
few common services that fall in this category.

Again, our rule of thumb is if we don't need it, we won't run it. It's that simple. If we do need any of these,
they are prime candidates for some kind of restrictive policies via firewall rules or other mechanisms (see
below).

« identd — This is a protocol that has been around for ages, and is often installed and running by
default. It is used to provide a minimal amount of information about who is connecting to a server.
But, it is not necessary in many cases. Where might you need it? Most IRC servers require it. Many
mail servers use it, but don't really require it. Try your mail setup without it. If identd is going to be a
problem, it will be because there is a time out before before the server starts sending or receiving
mail. So mail should work fine without it, but may be slower. A few ftp servers may require it. Most
don't though. Older versions of Red Hat started identd via inetd. Recent versions start this via init
scripts.

If identd is required, there are some configuration options that can greatly reduce the information thz
is revealed:

/usr/sbin/in.identd in.identd - —e —0 —n =N

The -o flag tells identd to not reveal the operating system type it is run on and to instead always
return "OTHER". The -e flag tells identd to always return "UNKNOWN-ERROR" instead of the
"NO-USER" or "INVALID-PORT" errors. The -n flag tells identd to always return user numbers
instead of user names, if you wish to keep the user names a secret. The —N flag makes identd chec
for the file .noident in the user's home directory for which the daemon is about to return a user
name. It that file exists then the daemon will give the error "HIDDEN-USER" instead of the norma
"USERID" response.

Mail server (MTA's like sendmail, gmail, etc) — Often a fully functional mail server like sendmail is
installed by default. The only time that this is actually required is if you are hosting a domain, and
receiving incoming mail directly. Or possibly, for exchanging mail on a LAN, in which case it does
not need Internet exposure and can be safely firewalled. For your ISP's POP mail access, you don't
need it even though this is a common configuration. One alternative here is to use fetchmail for PO
mail retrieval with the —m option to specify a local delivery agent: fetchmail -m procmail for
instance works with no sendmail daemon running at all. Sendmail, can be handy to have running, b
the point is, it is not required in many situations, and can be disabled, or firewalled safely.

BIND (named) — This often is installed by default, but is only really needed if you are an
authoritative name server for a domain. If you are not sure what this means, then you definitely don
need it. BIND is probably the number one crack target on the Internet. BIND is often used though in
a "caching" only mode. This can be quite useful, but does not require full exposure to the Internet. |
other words, it should be restricted or firewalled. See special handling of individual

applications below.

3.4. Exceptions 15

Security Quick—Start HOWTO for Red Hat Linux

3.5. Summary and Conclusions for Step 1

In this section we learned how to identify which services are running on our system, and were given some
tips on how to determine which services may be necessary. Then we learned how to find where the service
were being started, and how to stop them. If this has not made sense, now is a good time to re-read the ak

Hopefully you've already taken the above steps. Be sure to test your results with netstat again, just to verify
the desired end has been achieved, and only the services that are really required are running.

It would also be wise to do this after the next reboot, anytime you upgrade a package (to make sure a new
configuration does not sneak in), and after every system upgrade or new install.

3.5. Summary and Conclusions for Step 1 16

4. Step 2: Updating

OK, this section should be comparatively short, simple and straightforward compared to the above, but no
less important.

The very first thing after a new install you should check the errata notices at http://redhat.com/apps/errata/,
and apply all relevant updates. Only a year old you say? That's a long time actually, and not current enougt
be safe. Only a few months or few weeks? Check anyway. A day or two? Better safe than sorry. It is quite
possible that security updates have been released during the pre-release phase of the development and re
cycle. If you can't take this step, disable any publicly accessible services until you can.

Linux distributions are not static entities. They are updated with new, patched packages as the need arises
The updates are just as important as the original installation. Even more so, since they are fixes. Sometime
these updates are bug fixes, but quite often they are security fixes because some hole has been discoverec
Such "holes" are immediately known to the cracker community, and they are quick to exploit them on a larg
scale. Once the hole is known, it is quite simple to get in through it, and there will be many out there looking
forit. And Linux developers are also equally quick to provide fixes. Sometimes the same day as the hole hi
become known!

Keeping all installed packages current with your release is one of the most important steps you can take in
maintaining a secure system. It can not be emphasized enough that all installed packages should be kept
updated —- not just the ones you use. If this is burdensome, consider uninstalling any unused packages.
Actually this is a good idea anyway.

But where to get this information in a timely fashion? There are a number of web sites that offer the latest
security news. There are also a number of mailing lists dedicated to this topic. In fact, Red Hat has the
"watch" list, just for this purpose at https://listman.redhat.com/mailman/listinfo/redhat-watch-list. This is a
very low volume list by the way. This is an excellent way to stay abreast of issues effecting your release, ¢
is highly recommendetittp://linuxsecurity.com is a good site for Linux only issues. They also have weekly

newsletters available: http://www.linuxsecurity.com/general/newsletter.html.

Red Hat also has the up2date utility for automatically keeping your system(s) up to date ;-). See the man
page for details.

This is not a one time process —— it is ongoing. It is important to stay current. So watch those security notice
And subscribe to that security mailing list today! If you have cable modem, DSL, or other full time
connection, there is no excuse not to do this religiously. All distributions make this easy enough!

One last note: any time a new package is installed, there is also a chance that a new or revised configuratic
has been installed as well. Which means that if this package is a server of some kind, it may be enabled a¢
result of the update. This is bad manners, but it can happen, so be sure to run netstat or comparable to vel
your system is where you want it after any updates or system changes. In fact, do it periodically even if thet
are no such changes.

4.1. Summary and Conclusions for Step 2

It is very simple: make sure your Linux installation is current. Check the Red Hat errata for what updated
packages may be available. There is nothing wrong with running an older release, just so the packages in i

4. Step 2: Updating 17

http://redhat.com/errata/
https://listman.redhat.com/mailman/listinfo/redhat-watch-list
http://linuxsecurity.com
http://www.linuxsecurity.com/general/newsletter.html

Security Quick—Start HOWTO for Red Hat Linux

are updated according to what Red Hat has made available since the initial release. At least as long as R
Hat is still supporting the release and updates are still being provided. For instance, Red Hat has stoppec
providing updates for 5.0 and 5.1, but still does for 5.2.

4. Step 2: Updating 18

5. Step 3: Firewalls and Setting Access Policies

So what is a "firewall"? It's a vague term that can mean anything that acts as a protective barrier between u
and the outside world. This can be a dedicated system, or a specific application that provides this
functionality. Or it can be a combination of components, including various combinations of hardware and
software. Firewalls are built from "rules" that are used to define what is allowed to enter and exit a given
system or network. Let's look at some of the possible components that are readily available for Linux, and
how we might implement a reasonably safe firewalling strategy.

In Step 1 above, we have turned off all services we don't need. In our example, there were a few we still
needed to have running. In this section, we will take the next step here and decide which we need to leave
open to the world. And which we might be able to restrict in some way. If we can block them all, so much th
better, but this is not always practical.

5.1. Strategy

What we want to do now is restrict connections and traffic so that we only allow the minimum necessary for
whatever our particular situation is. In some cases we may want to block all incoming "new" connection
attempts. Example: we want to run X, but don't want anyone from outside to access it, so we'll block it
completely from outside connections. In other situations, we may want to limit, or restrict, incoming
connections to trusted sources only. The more restrictive, the better. Example: we want to ssh into our syst
from outside, but we only ever do this from our workplace. So we'll limit sshd connections to our workplace
address range. There are various ways to do this, and we'll look at the most common ones.

We also will not want to limit our firewall to any one application. There is nothing wrong with a
"layered" defense-in—depth approach. Our front line protection will be a packet filter —— either ipchains or
iptables (see below). Then we can use additional tools and mechanisms to reinforce our firewall.

We will include some brief examples. Our rule of thumb will be to deny everything as the default policy, ther
open up just what we need. We'll try to keep this as simple as possible since it can be an involved and
complex topic, and just stick to some of the most basic concepts. Semkisesection for further reading on

this topic.

5.2. Packet Filters —— Ipchains and Iptables

"Packet filters" (like ipchains) have the ability to look at individual packets, and make decisions based on
what they find. These can be used for many purposes. One common purpose is to implement a firewall.

Common packet filters on Linux are ipchains which is standard with 2.2 kernels, and iptables which is
available with the more recent 2.4 kernels. iptables has more advanced packet filtering capabilities and is
recommended for anyone running a 2.4 kernel. But either can be effective for our purposes. ipfwadm is a
similar utility for 2.0 kernels (not discussed here).

If constructing your own ipchains or iptables firewall rules seems a bit daunting, there are various sites that

can automate the process. See ttlrgks section. Also the included examples may be used as a starting point.
As of Red Hat 7.1, Red Hat is providing init scripts for ipchains and iptables, and gnome-lokkit for

5. Step 3: Firewalls and Setting Access Policies 19

Security Quick—Start HOWTO for Red Hat Linux

generating a very basic set of firewall rulgsd below). This may be adequate, but it is still recommended to
know the proper syntax and how the various mechanisms work as such tools rarely do more than a few ve
simple rules.

Various examples are given below. These are presented for
illustrative purposes to demonstrate some of the concepts
being discussed here. While they might also be useful as a
starting point for your own script, please note that they are
not meant to be all encompassing. You are strongly
encouraged to understand how the scripts work, so you can
create something even more tailored for your own situation.

The example scripts are just protecting inbound

connections to one interface (the one connected to the
Internet). This may be adequate for many simple home type
situations, but, conversely, this approach is not adequate for
all situations!

5.2.1. ipchains

ipchains can be used with either 2.2 or 2.4 kernels. When ipchains is in place, it checks every packet that
moves through the system. The packets move across different "chains”, depending where they originate an
where they are going. Think of "chains" as rule sets. In advanced configurations, we could define our own
custom chains. The three default built-in chains are input, which is incoming traffic, output, which is
outgoing traffic, and forward, which is traffic being forwarded from one interface to another (typically

used for "masquerading”). Chains can be manipulated in various ways to control the flow of traffic in and o
of our system. Rules can be added at our discretion to achieve the desired result.

At the end of every "chain" is a "target". The target is specified with the —j option to the command. The
target is what decides the fate of the packet and essentially terminates that particular chain. The most
common targets are mostly self-explanatory: ACCEPT, DENY, REJECT, and MASQ. MASQ is for
"ipmasquerading”. DENY and REJECT essentially do the same thing, though in different ways. Is one bett
than the other? That is the subject of much debate, and depends on other factors that are beyond the scor
this document. For our purposes, either should suffice.

ipchains has a very flexible configuration. Port (or port ranges), interfaces, destination address, source
address can be specified, as well as various other options. The man page explains these details well enou
that we won't get into specifics here.

Traffic entering our system from the Internet, enters via the input chain. This is the one that we need as
tight as we can make it.

Below is a brief example script for a hypothetical system. We'll let the comments explain what this script
does. Anything starting with a "#" is a comment. ipchains rules are generally incorporated into shell scripts,
using shell variables to help implement the firewalling logic.

#!/bin/sh
#

5.2.1. ipchains 20

Security Quick—Start HOWTO for Red Hat Linux

ipchains.sh

#

An example of a simple ipchains configuration.

#

This script allows ALL outbound traffic, and denies

ALL inbound connection attempts from the outside.

#

HHHHH AR R R R H R
Begin variable declarations and user configuration options
#

IPCHAINS=/sbin/ipchains

This is the WAN interface, that is our link to the outside world.

For pppd and pppoe users.

WAN_IFACE="ppp0"

WAN_IFACE="eth0"

end user configuration Options #HHHHHHHHHHHHHIHHIHHHHHHHH
HHAHHH R HHHHH R AR HHH

The high ports used mostly for connections we initiate and return

traffic.

LOCAL_PORTS="cat /proc/sys/net/ipv4/ip_local_port_range |cut —f1":\
“cat /proc/sys/net/ipv4/ip_local_port_range |cut —f2°

Any and all addresses from anywhere.
ANYWHERE="0/0"

Let's start clean and flush all chains to an empty state.
$IPCHAINS -F

Set the default policies of the built=in chains. If no match for any
of the rules below, these will be the defaults that ipchains uses.
$IPCHAINS —P forward DENY

$IPCHAINS -P output ACCEPT

$IPCHAINS -P input DENY

Accept localhost/loopback traffic.
$IPCHAINS -A input —i lo —j ACCEPT

Get our dynamic IP now from the Inet interface. WAN_IP will be our
IP address we are protecting from the outside world. Put this

here, so default policy gets set, even if interface is not up

yet.

WAN_IP="ifconfig $SWAN_IFACE |grep inet |cut -d : —=f 2 |cut —d \ —f 1"

Bail out with error message if no IP available! Default policy is
already set, so all is not lost here.
[-z "$SWAN_IP"] && echo "$WAN_IFACE not configured, aborting." && exit 1

Accept non—-SYN TCP, and UDP connections to LOCAL_PORTS. These are

the high, unprivileged ports (1024 to 4999 by default). This will

allow return connection traffic for connections that we initiate

to outside sources. TCP connections are opened with 'SYN' packets.

$IPCHAINS -A input —p tcp —s SANYWHERE —d $WAN_IP $LOCAL_PORTS ! -y —j ACCEPT

We can't be so selective with UDP since that protocol does not
know about SYNs.
$IPCHAINS -A input —p udp —s $ANYWHERE —-d $WAN_IP $LOCAL_PORTS —j ACCEPT

ICMP (ping)

#
ICMP rules, allow the bare essential types of ICMP only. Ping

5.2.1. ipchains

21

Security Quick—Start HOWTO for Red Hat Linux

request is blocked, ie we won't respond to someone else's pings,

but can still ping out.

$IPCHAINS —-A input —p icmp —-icmp-type echo-reply \
-s SANYWHERE -i $WAN_IFACE -j ACCEPT

$IPCHAINS —A input —p icmp ——icmp-type destination—unreachable \
-s SANYWHERE -i $WAN_IFACE -j ACCEPT

$IPCHAINS -A input —p icmp —-icmp-type time—exceeded \
-s SANYWHERE -i $WAN_IFACE -j ACCEPT

HHHHHH TR R R H R
Set the catchall, default rule to DENY, and log it all. All other

traffic not allowed by the rules above, winds up here, where it is

blocked and logged. This is the default policy for this chain

anyway, so we are just adding the logging ability here with '-I'.

Outgoing traffic is allowed as the default policy for the 'output’

chain. There are no restrictions on that.

$IPCHAINS -A input —| —j DENY
echo "Ipchains firewall is up “date’."

##—— eof ipchains.sh

To use the above script would require that it is executable (i.e. chmod +x ipchains.sh), and run by
root to build the chains, and hence the firewall.

To summarize what this example did was to start by setting some shell variables in the top section, to be us
later in the script. Then we set the default rules (ipchains calls these "policies") of denying all inbound and
forwarded traffic, and of allowing all our own outbound traffic. We had to open some holes in the high,
unprivileged ports so that we could have return traffic from connections that bigcat initiates to outside
addresses. If we connect to someone's web server, we want that HTML data to be able to get back to us, fc
instance. The same applies to other network traffic. We then allowed a few specific types of the ICMP
protocol (most are still blocked). We are also logging any inbound traffic that violates any of our rules so we
know who is doing what. Notice that we are only using IP address here, not hostnames of any kind. This is
that our firewall works, even in situation where there may be DNS failures. Also, to prevent any kind of DN!
spoofing.

See the ipchains man page for a full explanation of syntax. The important ones we used here are:

—A input: Adds a rule to the "input" chain. The default chains are input, output, and
forward.

—p udp: This rule only applies to the "UDP" "protocol”. The —p option can be used with
tcp, udp or icmp protocols.

—-i SWAN_IFACE: This rule applies to the specified interface only, and applies to
whatever chain is referenced (input, output, or forward).

—s <IP address> [port]: This rule only applies to the source address as specified. It
can optionally have a port (e.g. 22) immediately afterward, or port range, e.g. 1023:4999.

5.2.1. ipchains 22

Security Quick—Start HOWTO for Red Hat Linux

—d <IP address> [port]: This rule only applies to the destination address as specified.
Also, it may include port or port range.

-1 : Any packet that hits a rule with this option is logged (lower case "L").

—j ACCEPT: Jumps to the "ACCEPT" "target". This effectively terminates this chain and
decides the ultimate fate for this particular packet, which in this example is to "ACCEPT" it.
The same is true for other —j targets like DENY.

By and large, the order in which command line options are specified is not significant. The chain name (e.g
input) must come first though.

Remember in Step 1 when we ran netstat, we had both X and print servers running among other things. We
don't want these exposed to the Internet, even in a limited way. These are still happily running on bigcat, b
are now safe and sound behind our ipchains based firewall. You probably have other services that fall in th
category as well.

The above example is a simplistic all or none approach. We allow all our own outbound traffic (not
necessarily a good idea), and block all inbound connection attempts from outside. It is only protecting one
interface, and really just the inbound side of that interface. It would more than likely require a bit of fine
tuning to make it work for you. For a more advanced set of rules, see the Appendix. And you might want to

read_http://tldp.org/HOWTO/IPCHAINS-HOWTO.html.

Whenever you have made changes to your firewall, you should verify its integrity. One step to make sure
your rules seem to be doing what you intended, is to see how ipchains has interpreted your script. You car
this by opening your xterm very wide, and issuing the following command:

ipchains —L —n -v | less

The output is grouped according to chain. You should also find a way to scan yourself (see the Verifying
section below). And then keep an eye on your logs to make sure you are blocking what is intended.

5.2.2. iptables

iptables is the next generation packet filter for Linux, and requires a 2.4 kernel. It can do everything
ipchains can, but has a number of noteworthy enhancements. The syntax is similar to ipchains in many
respects. See the man page for details.

The most noteworthy enhancement is "connection tracking”, also known as "stateful inspection”. This gives
iptables more knowledge of the state of each packet. Not only does it know if the packet is a TCP or UDP
packet, or whether it has the SYN or ACK flags set, but also if it is part of an existing connection, or related
somehow to an existing connection. The implications for firewalling should be obvious.

The bottom line is that it is easier to get a tight firewall with iptables, than with ipchains. So this is the
recommended way to go.

Here is the same script as above, revised for iptables:

5.2.2. iptables 23

http://tldp.org/HOWTO/IPCHAINS-HOWTO.html

Security Quick—Start HOWTO for Red Hat Linux

#!/bin/sh

#

iptables.sh

#

An example of a simple iptables configuration.

#

This script allows ALL outbound traffic, and denies

ALL inbound connection attempts from the Internet interface only.
#

R R R R R R R R R R R R R R R
Begin variable declarations and user configuration options
#

IPTABLES=/sbin/iptables

Local Interfaces

This is the WAN interface that is our link to the outside world.

For pppd and pppoe users.

WAN_IFACE="ppp0"

WAN_IFACE="eth0"

#

end user configuration Options #HHHHHHHHHHHHHIHHEHHHHHHHH
HHAH R HHHH R R

Any and all addresses from anywhere.
ANYWHERE="0/0"

This module may need to be loaded:
modprobe ip_conntrack_ftp

Start building chains and rules #HHHHHHHHHHHHHHHHER R
#

Let's start clean and flush all chains to an empty state.

$IPTABLES -F

Set the default policies of the built=in chains. If no match for any
of the rules below, these will be the defaults that IPTABLES uses.
$IPTABLES -P FORWARD DROP

$IPTABLES -P OUTPUT ACCEPT

$IPTABLES -P INPUT DROP

Accept localhost/loopback traffic.
$IPTABLES —-A INPUT —ilo =) ACCEPT

ICMP (ping)

#

ICMP rules, allow the bare essential types of ICMP only. Ping

request is blocked, ie we won't respond to someone else's pings,

but can still ping out.

$IPTABLES —-A INPUT -picmp —-icmp-type echo-reply \
-s SANYWHERE -i $WAN_IFACE -j ACCEPT

$IPTABLES —-A INPUT —picmp —-icmp-type destination—unreachable \
-s SANYWHERE -i $WAN_IFACE -j ACCEPT

$IPTABLES —-A INPUT -picmp —-icmp-type time—exceeded \
-s SANYWHERE -i $WAN_IFACE -j ACCEPT

R R R R R R R R R R R R R
Set the catchall, default rule to DENY, and log it all. All other

traffic not allowed by the rules above, winds up here, where it is

blocked and logged. This is the default policy for this chain

anyway, so we are just adding the logging ability here with '-j

LOG'. Outgoing traffic is allowed as the default policy for the

'output’ chain. There are no restrictions on that.

5.2.2. iptables

24

Security Quick—Start HOWTO for Red Hat Linux

$IPTABLES —-A INPUT —m state ——state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES —-A INPUT —-m state ——state NEW —i ! $WAN_IFACE -j ACCEPT
$IPTABLES —-A INPUT —j LOG —m limit —=limit 30/minute ——log—prefix "Dropping: "

echo "Iptables firewall is up "date’."

##—— eof iptables.sh

The same script logic is used here, and thus this does pretty much the same exact thing as the ipchains sci
in the previous section. There are some subtle differences as to syntax. Note the case difference in the che
names for one (e.g. INPUT vs input). Logging is handled differently too. It has its own "target" now (—j
LOG), and is much more flexible.

There are some very fundamental differences as well, that might not be so obvious. Remember this section
from the ipchains script:

Accept non—-SYN TCP, and UDP connections to LOCAL_PORTS. These are the high,

unprivileged ports (1024 to 4999 by default). This will allow return

connection traffic for connections that we initiate to outside sources.

TCP connections are opened with 'SYN' packets. We have already opened

those services that need to accept SYNSs for, so other SYNs are excluded here

for everything else.

$IPCHAINS -A input —p tcp —s SANYWHERE -d $WAN_IP $SLOCAL_PORTS ! -y —-j ACCEPT

We can't be so selective with UDP since that protocol does not know
about SYNs.
$IPCHAINS -A input —p udp —s $SANYWHERE -d $WAN_IP $LOCAL_PORTS —j ACCEPT

We jumped through hoops here with ipchains so that we could restrict unwanted, incoming connections as
much as possible. A bit of a kludge, actually.

That section is missing from the iptables version. It is not needed as connection tracking handles this quite
nicely, and then some. This is due to the "statefulness" of iptables. It knows more about each packet than
ipchains. For instance, it knows whether the packet is part of a "new" connection, or an

"established" connection, or a "related" connection. This is the so—called "stateful inspection" of connection
tracking.

There are many, many features of iptables that are not touched on here. For more reading on the Netfilter
project and iptables, see http://neffilter.samba.@wmd for a more advanced set of rules, see the Appendix.

5.2.3. Red Hat Firewall Configuration Tools

Red Hat has not included firewall configuration tools until 7.1, when the GUI utility gnome-lokkit started
being bundled. gnome-lokkit does a minimalist set of rules for ipchains only. Explicit support for
iptables configuration is not an option, despite the fact that the default kernel is 2.4.

gnome-lokkit is an option on non—-upgrade installs, and can also be run as a stand—alone app any time afte
installation. It will ask a few simple questions, and dump the resulting rule—set into

5.2.3. Red Hat Firewall Configuration Tools 25

http://netfilter.samba.org

Security Quick—Start HOWTO for Red Hat Linux

letc/sysconfig/ipchains.

As mentioned, this is a fairly minimalist set of rules, and possibly a sufficient starting point. An example
letc/sysconfig/ipchains created by gnome-—lokkit:

Firewall configuration written by lokkit

Manual customization of this file is not recommended.
Note: ifup—post will punch the current nameservers through the
firewall; such entries will *not* be listed here.
:input ACCEPT

:forward ACCEPT

:output ACCEPT

—A input —s 0/0 —d 0/0 80 —p tcp -y —j ACCEPT

—A input —s 0/0 —d 0/0 25 —p tcp -y —j ACCEPT

—A input —s 0/0 —d 0/0 22 —p tcp -y —j ACCEPT

—A input —s 0/0 —d 0/0 23 —p tcp -y —j ACCEPT

—A input —s 0/0 —d 0/0 —i lo —j ACCEPT

—A input —s 0/0 —d 0/0 —i eth1l —j ACCEPT

—A input —s 127.0.0.1 53 —d 0/0 —p udp —j ACCEPT

—A input —s 0/0 —d 0/0 —p tcp -y —j REJECT

—A input —s 0/0 —d 0/0 —p udp —j REJECT

This is in a format that can be read by the ipchains command ipchains-restore. Consequently, a new or
modified set or rules can be generated with the ipchains—save, and redirecting the output to this file.
ipchains-restore is indeed how the ipchains init script processes this file. So for this to work, the
ipchains service must be activated:

chkconfig ipchains on

Conversely, if you want to roll your own iptables rules instead, you should make sure the ipchains init servic
is disabled. There is also an iptables init script, that works much the same as the ipchains version. There is
just no support from gnome-Ilokkit at this time.

5.3. Tcpwrappers (libwrap)

Tcpwrappers provides much the same desired results as ipchains and iptables above, though works quite
differently. Tcpwrappers actually intercepts the connection attempt, then examines its configurations files,
and decides whether to accept or reject the request. Tcpwrappers controls access at the application level,
rather than the socket level like iptables and ipchains. This can be quite effective, and is a standard
component on most Linux systems.

Tcpwrappers consists of the configuration files /etc/hosts.allow and /etc/hosts.deny. The
functionality is provided by the libwrap library.

Tcpwrappers first looks to see if access is permitted in /etc/hosts.allow, and if so, access is granted. If
not in /etc/hosts.allow, the file /etc/hosts.deny is then checked to see if access is not allowed.

If so, access is denied. Else, access is granted. For this reason, /etc/hosts.deny should contain only
one uncommented line, and that is: ALL: ALL. Access should then be permitted through entries in

5.3. Tcpwrappers (libwrap) 26

Security Quick—Start HOWTO for Red Hat Linux

letc/hosts.allow, where specific services are listed, along with the specific host addresses allowed to
access these services. While hostnames can be used here, use of hosthames opens the limited possibility
name spoofing.

Tcpwrappers is commonly used to protect services that are started via inetd (or xinetd). But also any progr
that has been compiled with libwrap support, can take advantage of it. Just don't assume that all programs
have built in libwrap support —— they do not. In fact, most probably don't. So we will only use it in our
examples here to protect services start via inetd. And then rely on our packet filtering firewall, or other
mechanism, to protect non—(x)inetd services.

Below is a small snippet from a typical inetd.conf file:

Pop and imap mail services et al

#

#pop-2 stream tcp nowait root /usr/shin/tcpd ipop2d
#pop—-3 stream tcp nowait root /usr/shin/tcpd ipop3d
#imap stream tcp nowait root /usr/sbin/tcpd imapd
#

The second to last column is the tcpwrappers daemon —- /usr/sbin/tcpd. Immediately after is the daemon it
is protecting. In this case, POP and IMAP mail servers. Your distro probably has already done this part for
you. For the few applications that have built—-in support for tcpwrappers via the libwrap library, specifying
the daemon as above is not necessary.

We will use the same principles here: default policy is to deny everything, then open holes to allow the
minimal amount of traffic necessary.

So now with your text editor, su to root and open /etc/hosts.deny. If it does not exist, then create it. It
is just a plain text file. We want the following line:

ALL: ALL

If it is there already, fine. If not, add it in and then save and close file. Easy enough. "ALL" is one of the
keywords that tcpwrappers understands. The format is $SERVICE_NAME : $WHO, so we are denying all
connections to all services here. At least all services that are using tcpwrappers. Remember, this will
primarily be inetd services. See man 5 hosts_access for details on the syntax of these files. Note the

"5" there!

Now let's open up just the services we need, as restrictively as we can, with a brief example:

ALL: 127.0.0.1
sshd,ipop3d: 192.168.1.
sshd: .myworkplace.com, hostess.mymomshouse.com

The first line allows all "localhost" connections. You will need this. The second allows connections to the
sshd and ipop3d services from IP addresses that start with 192.168.1., in this case the private address
range for our hypothetical home LAN. Note the trailing ".". It's important. The third line allows connections

5.3. Tcpwrappers (libwrap) 27

Security Quick—Start HOWTO for Red Hat Linux

to only our sshd daemon from any host associated with .myworkplace.com. Note the leading "." in this
example. And then also, the single host hostess.mymomshouse.com. In summary, localhost and all our
LAN connections have access to any and all tcpwrappered services on bigcat. But only our workplace
addresses, and our mother can use sshd on bigcat from outside connections. Everybody else is denied by
default policy in /etc/hosts.deny.

The types of wild cards above (.myworkplace.com and 192.168.1.) are not supported by

ipchains and iptables, or most other Linux applications for that matter. Also, tcpwrappers can use hostnam
in place of IP addresses which is quite handy in some situations. This does not work with ipchains and
iptables.

You can test your tcpwrappers configuration with the included tcpdchk utility (see the man page). Note that
at this time this does not work with xinetd, and may not even be included in this case.

There is nothing wrong with using both tcpwrappers and a packet filtering firewall like ipchains. In fact, it is
recommended to use a "layered" approach. This helps guard against accidental misconfigurations. In this
case, each connection will be tested by the packet filter rules first, then tcpwrappers.

Remember to make backup copies before editing system configuration files, restart the daemon afterward,
and then check the logs for error messages.

5.3.1. xinetd

As mentioned_xinetd is an enhanced inetd , and replaces inetd as of Red Hat 7.0. It has much of the sam
functionality, with some notable enhancements. One is that tcpwrappers support be is compiled in,
eliminating the need for explicit references to tcpd. Which means /etc/hosts.allow and

/etc/hosts.deny are automatically in effect.

Some of xinetd's other enhancements: specify IP address to listen on, which is a very effective method of
access control; limit the rate of incoming connections and the total number of simultaneous connections; lir
services to specific times of day. See the xinetd and xinetd.conf man pages for more details.

The syntax is quite different though. An example from /etc/xinetd.d/tftp:

service tftp

{
socket_type = dgram
bind =192.168.1.1
instances =2
protocol = udp
wait =yes
user = nobody
only_from =192.168.1.0
server = Jusr/sbin/in.tftpd
server_args = /tftpboot
disable =no

Notice the bind statement. We are only listening on, or "binding" to, the private, LAN interface here. No
outside connections can be made since the outside port is not even opened. We are also only accepting

5.3.1. xinetd 28

http://www.xinetd.org

Security Quick—Start HOWTO for Red Hat Linux

connections from 192.168.1.0, our LAN. For xinetd's purposes, this denotes any IP address beginning
with "192.168.1". Note that the syntax is different from inetd. The server statement in this case is the

tftp daemon, in.tftpd. Again, this assumes that libwrap/tcpwrappers support is compiled into xinetd. The
user running the daemon will be "nobody". Yes, there is a user account called "nobody", and it is wise to
run such daemons as non-root users whenever possible. Lastly, the disable statement is xinetd's way of
turning services on or off. In this case, itis "on". This is on here only as an example. Do NOT run tftp as a
public service as it is unsafe.

5.4. PortSentry

Portsentry works quite differently than the other tools discussed so far. Portsentry does what its hame impli
—— it guards ports. Portsentry is configured with the /etc/portsentry/portsentry.conf file.

Unlike the other applications discussed above, it does this by actually becoming the listening server on thos
ports. Kind of like baiting a trap. Running netstat —taup as root while portsentry is running, will show
portsentry as the LISTENER on whatever ports portsentry is configured for. If portsentry senses a connect
attempt, it blocks it completely. And then goes a step further and blocks the route to that host to stop all
further traffic. Alternately, ipchains or iptables can be used to block the host completely. So it makes an
excellent tool to stop port scanning of a range of ports.

But portsentry has limited flexibility as to whether it allows a given connection. It is pretty much all or
nothing. You can define specific IP addresses that it will ignore in

/etc/portsentry/portsentry.ignore. But you cannot allow selective access to individual ports.

This is because only one server can bind to a particular port at the same time, and in this case that is
portsentry itself. So it has limited usefulness as a stand—alone firewall. As part of an overall firewall strategy
yes, it can be quite useful. For most of us, it should not be our first line of defense, and we should only use
in conjunction with other tools.

Suggestion on when portsentry might be useful:

« As a second layer of defense, behind either ipchains or iptables. Packet filtering will catch the
packets first, so that anything that gets to portsentry would indicate a misconfiguration. Do not use |
conjunction with inetd services —— it won't work. They will butt heads.

« As a way to catch full range ports scans. Open a pinhole or two in the packet filter, and let
portsentry catch these and re—act accordingly.

« If you are very sure you have no exposed public servers at all, and you just want to know who is up
to what. But do not assume anything about what portsentry is protecting. By default it does not wat
all ports, and may even leave some very commonly probed ports open. So make sure you configure
accordingly. And make sure you have tested and verified your set up first, and that nothing is
exposed.

Allin all, the packet filters make for a better firewall.

5.5. Proxies

The dictionary defines "proxy" as "the authority or power to act on behalf of another”. This pretty well
describes software proxies as well. It is an intermediary in the connection path. As an example, if we were

5.4. PortSentry 29

http://www.psionic.org/products/portsentry.html

Security Quick—Start HOWTO for Red Hat Linux

using a web proxy like "squid”_(http://www.squid—cache.org/), every time we browse to a web site, we woul
actually be connecting to our locally running squid server. Squid in turn, would relay our request to the
ultimate, real destination. And then squid would relay the web pages back to us. Itis a go—between. Like
"firewalls", a "proxy" can refer to either a specific application, or a dedicated server which runs a proxy
application.

Proxies can perform various duties, not all of which have much to do with security. But the fact that they are
an intermediary, makes them a good place to enforce access control policies, limit direct connections throu
a firewall, and control how the network behind the proxy looks to the Internet. So this makes them strong
candidates to be part of an overall firewall strategy. And, in fact, are sometimes used instead of packet
filtering firewalls. Proxy based firewalls probably make more sense where many users are behind the same
firewall. And it probably is not high on the list of components necessary for home based systems.

Configuring and administering proxies can be complex, and is beyond the scope of this document. The
Firewall and Proxy Server HOWTQ, http://tildp.org/HOWTO/Firewall-HOWTO.html, has examples of
setting up proxy firewalls. Squid usage is discussed at

http://squid—docs.sourceforge.net/latest/html/bookl.htm

5.6. Individual Applications

Some servers may have their own access control features. You should check this for each server applicatic
you run. We'll only look at a few of the common ones in this section. Man pages, and other application
specific documentation, is your friend here. This should be done whether you have confidence in your
firewall or not. Again, layers of protection is always best.

« BIND - a very common package that provides name server functionality. The daemon itself is
"named". This only requires full exposure to the Internet if you are providing DNS look ups for one
or more domains to the rest of the world. If you are not sure what this means, you do not need, or
want, it exposed. For the overwhelming majority of us this is the case. It is a very common crack
target.

But it may be installed, and can be useful in a caching only mode. This does not require full exposur
to the Internet. Limit the interfaces on which it "listens" by editing /etc/named.conf (random
example shown):

options {

directory "/var/named";

listen—-on { 127.0.0.1; 192.168.1.1; };
version "N/A";

g

The "listen—on" statement is what limits where named listens for DNS queries. In this example, only
on localhost and bigcat's LAN interface. There is no port open for the rest of the world. It just is not
there. Restart named after making changes.

« X11 can be told not to allow TCP connections by using the —nolisten tcp command line option.

If using startx, you can make this automatic by placing alias startx="startx ——
—nolisten tcp" in your ~/.bashrc, or the system-wide file, /etc/bashrc, with your text

5.6. Individual Applications 30

http://www.squid-cache.org/
http://tldp.org/HOWTO/Firewall-HOWTO.html
http://squid-docs.sourceforge.net/latest/html/book1.htm

Security Quick—Start HOWTO for Red Hat Linux

editor. If using xdm (or variants such as gdm, kdm, etc), this option would be specified in
letc/X11/xdm/Xservers (or comparable) as :0 local /usr/bin/X11/X —nolisten tcp.
gdm actually uses /etc/X11/gdm/gdm.conf.

If using xdm (or comparable) to start X automatically at boot, /etc/inittab can be modified as:
xdm —udpPort 0, to further restrict connections. This is typically near the bottom of
/etc/inittab.

» Recent versions of sendmail can be told to listen only on specified addresses:

SMTP daemon options
O DaemonPortOptions=Port=smtp,Addr=127.0.0.1, Name=MTA

The above excerpt is from /etc/sendmail.cf which can be carefully added with your text
editor. The sendmail.mc directive is:

dnl This changes sendmail to only listen on the loopback device 127.0.0.1
dnl and not on any other network devices.
DAEMON_OPTIONS(Port=smtp,Addr=127.0.0.1, Name=MTA")

In case you would prefer to build a new sendmail.cf, rather than edit the existing one. Other mail
server daemons likely have similar configuration options. Check your local documentation. As of
Red Hat 7.1, sendmail has compiled in support for tcpwrappers as well.

« SAMBA connections can be restricted in smb.conf:

bind interfaces = true
interfaces = 192.168.1. 127.
hosts allow = 192.168.1. 127.

This will only open, and allow, connections from localhost (127.0.0.1), and the local LAN address
range. Adjust the LAN address as needed.

* The CUPS print daemon can be told where to listen for connections. Add to
/etc/cups/cupsd.conf:

Listen 192.168.1.1:631

This will only open a port at the specified address and port number.
« xinetd can force daemons to listen only on a specified address with its "bind" configuration directive

For instance, an internal LAN interface address. See man xinetd.conf for this and other syntax.
There are various other control mechanisms as well.

5.6. Individual Applications 31

Security Quick—Start HOWTO for Red Hat Linux

As always, anytime you make system changes, backup the configuration file first, restart the appropriate
daemon afterward, and then check the appropriate logs for error messages.

5.7. Verifying

The final step after getting your firewall in place, is to verify that it is doing what you intended. You would
be wise to do this anytime you make even minor changes to your system configuration.

So how to do this? There are several things you can do.

For our packet filters like ipchains and iptables, we can list all our rules, chains, and associated activity witt
iptables —nvL | less (substitute ipchains if appropriate). Open your xterm as wide as possible to
avoid wrapping long lines.

This should give you an idea if your chains are doing what you think they should. You may want to perform
some of the on-line tasks you normally do first: open a few web pages, send and retrieve mail, etc. This wil
of course, not give you any information on tcpwrappers or portsentry. tcpdchk can be used to verify
tcpwrappers configuration (except with xinetd).

And then, scan yourself. nmap is the scanning tool of choice and is included with recent Red Hat releases,
from _http://www.insecure.org/nmap/nmap_download.html. nmap is very flexible, and essentially is a "port
prober”. In other words, it looks for open ports, among other things. See the nmap man page for details.

If you do run nmap against yourself (e.g. nmap localhost), this should tell you what ports are open ——

and visible locally only! Which hopefully by now, is quite different from what can be seen from the outside.
So, scan yourself, and then find a trusted friend, or site (s&éitee section), to scan you from the outside.
Make sure you are not violating your ISPs Terms of Service by port scanning. It may not be allowed, even
the intentions are honorable. Scanning from outside is the best way to know how the rest of the world sees
you. This should tell you how well that firewall is working. See_the hmap section in the Appendix for some
examples on nmap usage.

One caveat on this: some ISPs may filter some ports, and you will not know for sure how well your firewall
is working. Conversely, they make it look like certain ports are open by using web, or other, proxies. The
scanner may see the web proxy at port 80 and mis—report it as an open port on your system.

Another option is to find a website that offers full rangsting._http://www.hackerwhacker.com is one such
site. Make sure that any such site is not just scanning a relatively few well known ports.

Repeat this procedure with every firewall change, every system upgrade or new install, and when any key
components of your system changes.

You may also want to enable logging all the denied traffic. At least temporarily. Once the firewall is verified
to be doing what you think it should, and if the logs are hopelessly overwhelming, you may want to disable

logging.

If relying on portsentry at all, please read the documentation. Depending on your configuration it will either
drop the route to the scanner, or implement a ipchains/iptables rule doing the same thing. Also, since it
"listens" on the specified ports, all those ports will show as "open”. A false alarm in this case.

5.7. Verifying 32

http://www.insecure.org/nmap/nmap_download.html
http://www.hackerwhacker.com

Security Quick—Start HOWTO for Red Hat Linux

5.8. Logging

Linux does a lot of logging. Usually to more than one file. It is not always obvious what to make of all these
entries —— good, bad or indifferent? Firewall logs tend to generate a fair amount of each. Of course, you are
wanting to stop only the "bad", but you will undoubtedly catch some harmless traffic as well. The 'net has a
lot of background noise.

In many cases, knowing the intentions of an incoming packet are almost impossible. Attempted intrusion?
Misbehaved protocol? Mis-typed IP address? Conclusions can be drawn based on factors such as destina
port, source port, protocol, and many other variables. But there is no substitute for experience in interpretir
firewall logs. It is a black art in many cases.

So do we really need to log? And how much should we be trying to log? Logging is good in that it tells us
that the firewall is functional. Even if we don't understand much of it, we know it is doing "something". And
if we have to, we can dig into those logs and find whatever data might be called for.

On the other hand, logging can be bad if it is so excessive, it is difficult to find pertinent data, or worse, fills
up a partition. Or if we over re—act and take every last entry as an all out assault. Some perspective is a gre
benefit, but something that new users lack almost by definition. Again, once your firewall is verified, and yol
are perplexed or overwhelmed, home desktop users may want to disable as much logging as possible. Any
with greater responsibilities should log, and then find ways to extract the pertinent data from the logs by
filtering out extraneous information.

Not sure where to look for log data? The two logs to keep an eye on are /var/log/messages and
Ivar/log/secure. There may be other application specific logs, depending on what you have installed,
or using. FTP, for instance, logs to /var/log/xfer on Red Hat.

Portsentry and tcpwrappers do a certain amount of logging that is not adjustable. xinetd has logging
enhancements that can be turned on. Both ipchains and iptables, on the other hand, are very flexible as tc
what is logged.

For ipchains the -l option can be added to any rule. iptables uses the —j LOG target, and requires its own,
separate rule instead. iptables goes a few steps further and allows customized log entries, and rate limiting
See the man page. Presumably, we are more interested in logging blocked traffic, so we'd confine logging t
only our DENY and REJECT rules.

So whether you log, and how much you log, and what you do with the logs, is an individual decision, and
probably will require some trial and error so that it is manageable. A few auditing and analytical tools can be
quite helpful:

Some tools that will monitor your logs for you and notify you when necessary. These likely will require some
configuration, and trial and error, to make the most out of them:

* A nice log entry analyzer for ipchains and iptables from Manfred Bartz:

http://www.logi.cc/linux/NetfilterLogAnalyzer.php3. What does all that stuff mean anyway?

« LogSentry (formerly logcheck) is available from _http://www.psionic.org/products/logsentry.html, the
same group that is responsible for portsentry. LogSentry is an all purpose log monitoring tool with a

flexible configuration, that handles multiple logs.
« http://freshmeat.net/projects/firelogd/, the Firewall Log Daemon from lan Jones, is designed to
watch, and send alerts on iptables or ipchains logs data.

5.8. Logging 33

http://www.logi.cc/linux/NetfilterLogAnalyzer.php3
http://www.psionic.org/products/logsentry.html
http://freshmeat.net/projects/firelogd/

Security Quick—Start HOWTO for Red Hat Linux

« http://freshmeat.net/projects/fwlogwatch/ by Boris Wesslowski, is a similar idea, but supports more
log formats.

5.9. Where to Start

Let's take a quick look at where to run our firewall scripts from.

Portsentry can be run as an init process, like other system services. It is not so important when this is done
Tcpwrappers will be automatically be invoked by inetd or xinetd, so not to worry there either.

But the packet filtering scripts will have to be started somewhere. And many scripts will have logic that uses
the local IP address. This will mean that the script must be started after the interface has come up and beel
assigned an IP address. Ideally, this should be immediately after the interface is up. So this depends on hc
you connect to the Internet. Also, for protocols like PPP or DHCP that may be dynamic, and get different IF
on each re—connect, it is best to have the scripts run by the appropriate daemon.

Red Hat uses /etc/ppp/ip—up.local for any user defined, local PPP configuration. If this file does not
exist, create it, and make it executable (chmod +x). Then with your text editor, add a reference to your
firewall script.

For DHCP, it depends on which client. dhcpcd will execute /etc/dhcpcd/dhcpecd—<interface>.exe (e.g.
dhcpcd-eth0.exe) whenever a lease is obtained or renewed. So this is where to put a reference to your
firewall script. For pump (the default on Red Hat), the main configuration file is /etc/pump.conf.

Pump will run whatever script is defined by the "script" statement any time there is a new or renewed lease:

script /usr/local/bin/ipchains.sh

If you have a static IP address (i.e. it never changes), the placement is not so important and should be
before the interface comes up!

5.10. Summary and Conclusions for Step 3

In this section we looked at various components that might be used to construct a "firewall". And learned th
a firewall is as much a strategy and combination of components, as it is any one particular application or
component. We looked at a few of the most commonly available applications that can be found on most, if
not all, Linux systems. This is not a definitive list.

This is a lot of information to digest at all at one time and expect anyone to understand it all. Hopefully this
can used as a starting point, and used for future reference as well. The packet filter firewall examples can b
used as starting points as well. Just use your text editor, cut and paste into a file with an appropriate name,
and then run chmod +x against it to make it executable. Some minor editing of the variables may be
necessary. Also look at the Links section for sites and utilities that can be used to generate a custom script.
This may be a little less daunting.

Now we are done with Steps 1, 2 and 3. Hopefully by now you have already instituted some basic measure
to protect your system(s) from the various and sundry threats that lurk on networks. If you haven't

5.9. Where to Start 34

http://freshmeat.net/projects/fwlogwatch/

Security Quick—Start HOWTO for Red Hat Linux

implemented any of the above steps yet, now is a good time to take a break, go back to the top, and have
The most important steps are the ones above.

A few quick conclusions...

"What is best iptables, ipchains, tcpwrappers, or portsentry?" The quick answer is that iptables can do mo
than any of the others. So if you are using a 2.4 kernel, use iptables. Then, ipchains if using a 2.2 kernel.
long answer is "it just depends on what you are doing and what the objective is". Sorry. The other tools all
have some merit in any given situation, and all can be effective in the right situation.

"Do | really need all these packages?" No, but please combine more than one approach, and please follow
the above recommendations. iptables by itself is good, but in conjunction with some of the other approache
we are even stronger. Do not rely on any single mechanism to provide a security blanket. "Layers" of
protection is always best. As is sound administrative practices. The best iptables script in the world is but ol
piece of the puzzle, and should not be used to hide other system weaknesses.

"If I have a small home LAN, do | need to have a firewall on each computer?" No, not necessary as long as
the LAN gateway has a properly configured firewall. Unwanted traffic should be stopped at that point. And
as long as this is working as intended, there should be no unwanted traffic on the LAN. But, by the same
token, doing this certainly does no harm. And on larger LANs that might be mixed platform, or with
untrusted users, it would be advisable.

5.9. Where to Start 35

6. Intrusion Detection

This section will deal with how to get early warning, how to be alerted after the fact, and how to clean up
from intrusion attempts.

6.1. Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDS for short) are designed to catch what might have gotten past the firewall.
They can either be designed to catch an active break-in attempt in progress, or to detect a successful
break-in after the fact. In the latter case, it is too late to prevent any damage, but at least we have early
awareness of a problem. There are two basic types of IDS: those protecting networks, and those protecting
individual hosts.

For host based IDS, this is done with utilities that monitor the filesystem for changes. System files that have
changed in some way, but should not change —— unless we did it —— are a dead give away that something i
amiss. Anyone who gets in, and gets root, will presumably make changes to the system somewhere. This |
usually the very first thing done. Either so he can get back in through a backdoor, or to launch an attack
against someone else. In which case, he has to change or add files to the system.

This is where tools like tripwire_(http://www.tripwire.org) play a role. Tripwire is included beginning with
Red Hat 7.0. Such tools monitor various aspects of the filesystem, and compare them against a stored
database. And can be configured to send an alert if any changes are detected. Such tools should only be
installed on a known "clean" system.

For home desktops and home LANS, this is probably not an absolutely necessary component of an overall
security strategy. But it does give peace of mind, and certainly does have its place. So as to priorities, make
sure the Steps 1, 2 and 3 above are implemented and verified to be sound, before delving into this.

We can get somewhat the same results with rpm —Va, which will verify all packages, but without all the
same functionality. For instance, it will not notice new files added to most directories. Nor will it detect files
that have had the extended attributes changed (e.g. chattr +i, man chattr and man Isattr). For this to be
helpful, it needs to be done after a clean install, and then each time any packages are upgraded or added.
Example:

rpm —Va > /root/system.checked

Then we have a stored system snapshot that we can refer back to.

Another idea is to run chkrootkithttp://www.chkrootkit.org/) as a weekly cron job. This will detect
common "rootkits".

6.2. Have | Been Hacked?

Maybe you are reading this because you've noticed something "odd" about your system, and are suspicious
that someone was gotten in? This can be a clue.

6. Intrusion Detection 36

http://www.tripwire.org
http://www.chkrootkit.org/

Security Quick—Start HOWTO for Red Hat Linux

The first thing an intruder typically does is install a "rootkit". There are many prepackaged rootkits available
on the Internet. The rootkit is essentially a script, or set of scripts, that makes quick work of modifying the
system so the intruder is in control, and he is well hidden. He does this by installing modified binaries of
common system utilities and tampering with log files. Or by using special kernel modules that achieve
similar results. So common commands like Is may be modified so as to not show where he has his files

stored.

Clever!

A well designed rootkit can be quite effective. Nothing on the system can really be trusted to provide accure
feedback. Nothing! But sometimes the modifications are not as smooth as intended and give hints that
something is not right. Some things that might be warning signs:

Login acts weird. Maybe no one can login. Or only root can login. Any login weirdness at all should
be suspicious. Similarly, any weirdness with adding or changing passwords.

Wierdness with other system commands (e.g. top or ps) should be cause for concern as well.

System utilities are slower, or awkward, or show strange and unexpected results. Common utilities
that might be modified are: Is, find, who, w, last, netstat, login, ps, top. This is not a definitive list!
Files or directories named "..." or ".. " (dot dot space). A sure bet in this case. Files with haxor
looking names like "rOOt-something".

Unexplained bandwidth usage, or connections. Script kiddies have a fondness for IRC, so such
connections should raise a red flag.

Logs that are missing completely, or missing large sections. Or a sudden change in syslog behavior
Mysterious open ports, or processes.

Files that cannot be deleted or moved. Some rootkits use chattr to make files "immutable”, or not
changable. This kind of change will not show up with Is, or rpm -V, so the files look normal at first
glance. See the man pages for chattr and Isattr on how to reverse this. Then see the next section
below on restoring your system as the jig is up at this point.

This is becoming a more and more common script kiddie trick. In fact, one quick test to run on a
suspected system (as root):

lusr/bin/Isattr "echo $PATH | tr """ | grep i——

This will look for any "immutable" files in root's PATH, which is almost surely a sign of trouble since
no standard distributions ship files in this state. If the above command turns up anything at all, then
plan on completely restoring the system (see below). A quick sanity check:

chattr +i /bin/ps

lusr/bin/lsattr “"echo $PATH | tr """ | grep "i——"
e /bin/ps

chattr —i /bin/ps

This is just to verify the system is not tampered with to the point that Isattr is completely unreliable.
The third line is exactly what you should see.

Indications of a "sniffer", such as log messages of an interface entering "promiscuous" mode.
Modifications to /etc/inetd.conf, rc.local, rc.sysint or /etc/passwd. Especially,
any additions. Try using cat or tail to view these files. Additions will most likely be appended to the

6. Intrusion Detection 37

Security Quick—Start HOWTO for Red Hat Linux

end. Remember though such changes may not be "visible" to any system tools.

Sometimes the intruder is not so smart and forgets about root's .bash_history, or cleaning up log entries,
or even leaves strange, leftover files in /tmp. So these should always be checked too. Just don't necessaril
expect them to be accurate. Often such left behind files, or log entries, will have obvious script kiddie
sounding names, e.g. "rO0t.sh".

Packet sniffers, like tcpdump_(http://www.tcpdump.org), might be useful in finding any uninvited traffic.
Interpreting sniffer output is probably beyond the grasp of the average new user. snort (http://www.snort.org
and ethereal (http://www.ethereal.com), are also good. Ethereal has a GUI.

As mentioned, a compromised system will undoubtedly have altered system binaries, and the output of
system utilities is not to be trusted. Nothing on the system can be relied upon to be telling you the whole
truth. Re—installing individual packages may or may not help since it could be system libraries or kernel
modules that are doing the dirty work. The point here is that there is no way to know with absolute certainty
exactly what components have been altered.

We can use rpm -Va |less to attempt to verify the integrity all packages. But again there is no assurance
that rpm itself has not been tampered with, or the system components that RPM relies on.

If you have pstree on your system, try this instead of the standard ps. Sometimes the script kiddies forget
about this one. No guarantees though that this is accurate either.

You can also try querying the /proc filesystem, which contains everything the kernel knows about
processes that are running:

cat /proc/*/stat | awk {print $1,$2}'

This will provide a list of all processes and PID numbers (assuming a malicious kernel module is not hiding
this).

Another approach is to visit http://www.chkrootkit.org, download their rootkit checker, and see what it says.

Some interesting discussions on issues surrounding forensics can be found at http://www.fish.com/security/
There is also a collection of tools available, aptly called "The Coroner's Toolkit" (TCT).

Read below for steps on recovering from an intrusion.

6.3. Reclaiming a Compromised System

So now you've confirmed a break—-in, and know that someone else has root access, and quite likely one or
more hidden backdoors to your system. You've lost control. How to clean up and regain control?

There is no sure fire way of doing this short of a complete re-install. There is no way to find with assurance

all the modified files and backdoors that may have been left. Trying to patch up a compromised system risk
a false sense of security and may actually aggravate an already bad situation.

6.3. Reclaiming a Compromised System 38

http://www.tcpdump.org
http://www.snort.org
http://www.ethereal.com
http://www.chkrootkit.org
http://www.fish.com/security/

Security Quick—Start HOWTO for Red Hat Linux

The steps to take, in this order:

« Pull the plug and disconnect the machine. You may be unwittingly participating in criminal activity,
and doing to others what has been done to you.

« Depending on the needs of the situation and time available to restore the system, it is advantageou:s
learn as much as you can about how the attacker got in, and what was done in order to plug the hol
and avoid a recurrence. This could conceivably be time consuming, and is not always feasible. And
may require more expertise than the typical user possesses.

« Backup important data. Do not include any system files in the backup, and system configuration file:
like inetd.conf. Limit the backup to personal data files only! You don't want to backup, then
restore something that might open a backdoor or other hole.

» Re-install from scratch, and reformat the drive during the installation (mke2fs) to make sure no
remnants are hiding. Actually, replacing the drive is not a bad idea. Especially, if you want to keep
the compromised data available for further analysis.

» Restore from backups. After a clean install is the best time to install an IDS (Intrusion Detection

System) such as tripwire_(http://www.tripewire.org).
« Apply all updates from_ftp://updates.redhat.com.
« Re—examine your system for unnecessary services. Re—examine your firewall and access policies,

and tighten all holes. Use new passwords, as these were stolen in all likelihood.
* Re—connect system ;-)

At this time, any rootkit cleanup tools that may be available on-line are not recommended. They probably d
work just fine most of the time. But again, how to be absolutely sure that all is well and all vestiges of the
intrusion are gone?

6.3. Reclaiming a Compromised System 39

http://www.tripwire.org
ftp://updates.redhat.com

7. General Tips

This section will quickly address some general concepts for maintaining a more secure and reliable system
network. Let's emphasize "maintaining" here since computer systems change daily, as does the environme
around them. As mentioned before, there isn't any one thing that makes a system secure. There are too me
variables. Security is an approach and an attitude more than it is a reliance on any particular product,
application or specific policy.

Do not allow remote root logins. This may be controlled by a configuration file such as
/etc/securetty. Remove any lines that begin "pts". This is one big security hole.

In fact, don't log in as root at all. Period. Log in on your user account and su to root when needed.
Whether the login is remote or local. Or use sudo, which can run individual commands with root
privileges. (Red hat includes a sudo package.) This takes some getting used to, but it is the
"right" way to do things. And the safest. And will become more a more natural way of doing this as
time goes on.

I know someone is saying right now "but that is so much trouble, | am root, and it is my system".
True, but root is a specialized account that was not ever meant to be used as a regular user accoun
Root has access to everything, even hardware devices. The system "trusts" root. It believes that yo
know what you are doing. If you make a mistook, it assumes that you meant that, and will do it's bes
to do what you told it to do...even if that destroys the system!

As an example, let's say you start X as root, open Netscape, and visit a web site. The web page has
badly behaved java script. And conceivably now that badly written java script might have access to
much more of your system than if you had done it the "right" way.

Take passwords seriously. Don't give them out to anyone. Don't use the same one for everything.
Don't use root's password for anything else —— except root's password! Never sign up or register on
line, using any of your system passwords. Passwords should be a combination of mixed case letter:
numbers and/or punctuation and a reasonable length (eight characters or longer). Don't use so—call
"dictionary" words that are easy to guess like "cat" or "dog". Don't incorporate personal information
like names or dates or hostnames. Don't write down system passwords —— memorize them.

Use the more secure "shadow" passwords. This has been the default on Red Hat for some time nov
If the file /etc/shadow exists, then it is enabled already. The commands pwconv and grpconv,
can be used to convert password and group files to shadow format if available.

Avoid using programs that require clear text logins over untrusted networks like the Internet.

Telnet is a prime example. ssh is much better. If there is any support for SSL (Secure Socket
Layers), use it. For instance, does your ISP offer POP or IMAP mail via SSL? Recent Red Hat
releases do include_openssl, and many Linux applications can use SSL where support is available.
Set resource limits. There are various ways to do this. The need for this probably increases with the
number of users accessing a given system. Not only does setting limits on such things as disk spac
prevent intentional mischief, it can also help with unintentionally misbehaved applications or
processes. quota (man quota) can be used to set disk space limits. Bash includes the

ulimit command (man ulimit or man bash), that can limit various functions on a per user basis.

Also, not discussed here at any length, but PAM (Pluggable Authentication Modules) has a very
sophisticated approach to controlling various system functions and resources. See man pam to get
started. PAM is