Net wor k Wor ki ng Group J. Callas
Request for Comments: 4880 PGP Cor poration
(bsol etes: 1991, 2440 L. Donner hacke
Cat egory: Standards Track | KS GnbH
H. Fi nney

PGP Cor poration

D. Shaw

R Thayer

Novenber 2007

OpenPGP Message For mat
Status of This Meno

This docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Abst r act

This docunent is maintained in order to publish all necessary

i nformati on needed to devel op interoperable applications based on the
QpenPGP format. It is not a step-by-step cookbook for witing an
application. It describes only the format and net hods needed to
read, check, generate, and wite conforning packets crossing any
network. It does not deal with storage and inpl enentati on questions.
It does, however, discuss inplenentation issues necessary to avoid
security flaws.

OpenPGP software uses a conbi nation of strong public-key and
synmmetric cryptography to provide security services for electronic
communi cati ons and data storage. These services include
confidentiality, key managenent, authentication, and digita
signatures. This docunent specifies the nessage formats used in
OpenPGP

Call as, et al St andards Track [Page 1]

RFC 4880 OpenPGP Message For mat Novenber 2007

Tabl e of Contents

1

2.

Introducti On 5
O 1= 0 5
General fUNCLIONS 6
2.1. Confidentiality via Encryption 6
2.2. Authentication via Digital Signature 7
2.3, CONMPr eSS ON .ttt 7
2.4. Conversion to Radi X-64 8
2.5. Signature-Only Applications 8
Data El ement Formats 8
3.1. Scalar Nunmbers 8
3.2. Multiprecision Integersy 9
3.3, Key DS . 9
B A, T eXt 9
3.5, Time Fields 10
3.6, KeYringS ..o 10
3.7. String-to-Key (S2K) Specifiers 10
3.7.1. String-to-Key (S2K) Specifier Types 10
3.7.1.1. Sinple S2K 10

3.7.1.2. Salted S2K 11

3.7.1.3. Iterated and Salted S2K 11

3.7.2. String-to-Key Usage 12
3.7.2.1. Secret-Key Encryption 12

3.7.2.2. Symmetric-Key Message Encryption 13

Packet Syntax 13
4.1, OVBIVI BW ot 13
4.2. Packet Headers 13
4.2.1. AOd Format Packet Lengths 14
4.2.2. New Format Packet Lengths 15
4.2.2.1. One-Cctet Lengths 15

4.2.2.2. Two-Cctet Lengths 15

4.2.2.3. Five-Cctet Lengths 15

4.2.2.4. Partial Body Lengths 16

4.2.3. Packet Length Exanples 16

4.3, Packet Tagsttt 17
Packet TypPeS ... e 17
5.1. Public-Key Encrypted Session Key Packets (Tag 1) 17
5.2. Signature Packet (Tag 2) i 19
5.2.1. Signature TYPeS ...ttt 19
5.2.2. Version 3 Signature Packet Format 21
5.2.3. Version 4 Signature Packet Format 24
5.2.3.1. Signature Subpacket Specification 25

5.2.3.2. Signature Subpacket Types 27

5.2.3.3. Notes on Self-Signatures 27

5.2.3.4. Signature Creation Tine 28

5. 2.3.5. ISSUBIr ... 28

5.2.3.6. Key Expiration Tinmecoo.... 28

Call as, et al St andards Track [Page 2]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.7. Preferred Symmetric Algorithms 28

5.2.3.8. Preferred Hash Algorithms 29

5.2.3.9. Preferred Conpression Algorithms 29

5.2.3.10. Signature Expiration Tine 29

5.2.3.11. Exportable Certification 29

5.2.3.12. Revocable 30

5.2.3.13. Trust Signature 30

5.2.3.14. Regular Expression 31

5.2.3.15. Revocation Key i, 31

5.2.3.16. Notation Data, 31

5.2.3.17. Key Server Preferences 32

5.2.3.18. Preferred Key Server 33

5.2.3.19. Primary User ID 33

5.2.3.20. Policy URI 33

5.2.3.21. Key Flags i, 33

5.2.3.22. Signer’s User ID.......... 34

5.2.3.23. Reason for Revocation 35

5.2.3.24. Features 36

5.2.3.25. Signature Target i, 36

5.2.3.26. Enbedded Signature 37

5.2.4. Conmputing Signatures 37
5.2.4.1. Subpacket Hints 38

5.3. Symmetric-Key Encrypted Session Key Packets (Tag 3) 38
5.4. One-Pass Signature Packets (Tag 4)cuiiiun... 39
5.5. Key Material Packet 40
5.5.1. Key Packet Variants i 40
5.5.1.1. Public-Key Packet (Tag 6) 40

5.5.1.2. Public-Subkey Packet (Tag 14) 40

5.5.1.3. Secret-Key Packet (Tag 5) 41

5.5.1.4. Secret-Subkey Packet (Tag 7) 41

5.5.2. Public-Key Packet Formats 41
5.5.3. Secret-Key Packet Formats 43

5.6. Conpressed Data Packet (Tag 8) 45
5.7. Symmetrically Encrypted Data Packet (Tag 9) 45
5.8. Marker Packet (Obsolete Literal Packet) (Tag 10) 46
5.9. Literal Data Packet (Tag 11) 46
5.10. Trust Packet (Tag 12), 47
5.11. User ID Packet (Tag 13)t 48
5.12. User Attribute Packet (Tag 17) 48
5.12.1. The Inmage Attribute Subpacket 48
5.13. Sym Encrypted Integrity Protected Data Packet (Tag 18) ..49
5.14. Modification Detection Code Packet (Tag 19) 52
6. Radi X-64 CONVErSi ONSt e e e 53
6.1. An Inplenmentation of the CRG-24 in "C' 54
6.2. Forming ASCIT ArmmDr 54
6.3. Encoding Binary in Radix-64 57
6.4. Decoding Radi X-64 58
6.5. Exanples of Radi X-64, 59

Call as, et al St andards Track [Page 3]

RFC 4880 OpenPGP Message For mat Novenber 2007

10.

11.

12.

13.

6.6. Exanple of an ASCII Arnored Messagecuu... 59
Cleartext Signature Framework 59
7.1. Dash-Escaped Text 60
Regul ar EXPressi ONS 61
CONSt ANt S .. o 61
9.1. Public-Key Algorithms 62
9.2. Symmetric-Key Algorithns 62
9.3. Conpression Algorithms i, 63
9.4. Hash Algorithns 63
I ANA Considerati ONS e 63
10.1. New String-to-Key Specifier Types 64
10.2. New PacKet s 64
10.2.1. User Attribute Types 64
10.2.1.1. Inmge Format Subpacket Types 64

10.2.2. New Signature Subpackets 64
10.2.2.1. Signature Notation Data Subpackets 65

10.2.2.2. Key Server Preference Extensions 65

10.2.2.3. Key Flags Extensions 65

10.2.2. 4. Reason For Revocation Extensions 65

10.2.2.5. Inplenentation Features 66

10. 2. 3. New Packet Versions 66
10.3. New Al gorithms e 66
10.3.1. Public-Key Algorithms 66
10.3.2. Symmetric-Key Algorithns 67
10.3.3. Hash Algorithms 67

10. 3. 4. Conpression Algorithms 67
Packet Conmposition 67
11.1. Transferable Public Keys 67
11.2. Transferable Secret Keys i, 69
11. 3. OpenPGP MBSSageS . .t vt 69
11. 4. Detached Signatures, 70
Enhanced Key FOrmats e 70
12. 1. Key StrUCLUIresS e e e 70
12.2. Key IDs and Fingerprints 71
Notes on Algorithms 72
13.1. PKCS#1 Encoding in OpenPGP 72
13.1.1. EME-PKCS1-V1_5-ENCODE 73
13.1.2. EME-PKCS1-v1 5-DECODE 73
13.1.3. EMBA-PKCS1-V1_ 5 ... 74
13.2. Symmetric AlgorithmPreferences 75
13.3. Oher AlgorithmPreferences 76
13.3.1. Conpression Preferences 76
13.3.2. Hash AlgorithmPreferences 76

13. 4. PlainteXt e 77
13. 5. RSA 77
13, 6. DSA o 77
13.7. Elgamal 78
13.8. Reserved AlgorithmNunbers 78

Call as, et al St andards Track [Page 4]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.9. QpenPGP CFB Mode i e e e 78
13.10. Private or Experinmental Paranmeters 79
13.11. Extension of the MDC System, 80
13.12. Meta-Considerations for Expansion 80
14. Security Considerati oOns 81
15. Inplementation NitsS e e 84
16. Ref erenCes 86
16.1. Normative References 86
16.2. Informative References 88
1. Introduction

Thi s docunent provides information on the nessage-exchange packet
formats used by OpenPGP to provide encryption, decryption, signing,
and key managenent functions. It is a revision of RFC 2440, "QpenPGP
Message Format", which itself replaces RFC 1991, "PGP Message
Exchange Formats" [RFC1991] [RFC2440].

1.1. Terns

* penPGP - This is a termfor security software that uses PGP 5. X
as a basis, formalized in RFC 2440 and this docunent.

* PGP - Pretty Good Privacy. PGP is a fanmly of software systens
devel oped by Philip R Zi nmermann from whi ch OpenPGP i s based.

* PGP 2.6.x - This version of PGP has many variants, hence the term
PGP 2.6.x. It used only RSA, MD5, and IDEA for its cryptographic
transforns. An informational RFC, RFC 1991, was witten
describing this version of PGP

* PGP 5.x - This version of PG is fornerly known as "PGP 3" in the
community and also in the predecessor of this docunment, RFC 1991
It has new formats and corrects a nunmber of problens in the PGP
2.6.x design. It is referred to here as PGP 5.x because that
software was the first release of the "PG 3" code base.

* GuPG - G\U Privacy Guard, also called GPG GiwPG is an QpenPGP
i mpl erent ation that avoids all encunbered al gorithmns.
Consequently, early versions of GiuPG did not include RSA public
keys. GilwuPG may or may not have (dependi ng on version) support
for I DEA or other encunbered al gorithns.

"PGP", "Pretty Good", and "Pretty Good Privacy" are trademarks of PGP

Corporation and are used with pernission. The term"QpenPG" refers
to the protocol described in this and rel ated docunents.

Call as, et al St andards Track [Page 5]

RFC 4880 OpenPGP Message For mat Novenber 2007

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in [RFC2119].

The key words "PRIVATE USE", "H ERARCHI CAL ALLOCATI ON', "FI RST COVE
FI RST SERVED', "EXPERT REVI EW, "SPECI FI CATI ON REQUI RED', "I ESG
APPROVAL", "I ETF CONSENSUS", and "STANDARDS ACTI ON' that appear in
this docunent when used to describe namespace allocation are to be
interpreted as described in [RFC2434].

2. General functions

QpenPGP provides data integrity services for nessages and data files
by using these core technol ogi es:

- digital signatures
- encryption

- conpression

- Radi x- 64 conversion

In addition, OpenPGP provides key nanagenent and certificate
services, but many of these are beyond the scope of this docunent.

2.1. Confidentiality via Encryption

OpenPGP combi nes synmetric-key encryption and public-key encryption
to provide confidentiality. Wen made confidential, first the object
is encrypted using a synmetric encryption algorithm Each symetric
key is used only once, for a single object. A new "session key" is
generated as a random nunmber for each object (sonetimes referred to
as a session). Since it is used only once, the session key is bound
to the nmessage and transmtted with it. To protect the key, it is
encrypted with the receiver’s public key. The sequence is as
fol | ows:

1. The sender creates a nessage.

2. The sendi ng OpenPGP generates a random nunber to be used as a
session key for this nmessage only.

3. The session key is encrypted using each recipient’s public key.
These "encrypted session keys" start the nessage.

Call as, et al St andards Track [Page 6]

RFC 4880 OpenPGP Message For mat Novenber 2007

4. The sending OpenPGP encrypts the nessage using the session key,
which fornms the remai nder of the nessage. Note that the nessage
is also usually conpressed

5. The receiving OpenPGP decrypts the session key using the
recipient’s private key.

6. The receiving OpenPGP decrypts the nessage using the session key.
If the message was conpressed, it will be deconpressed.

Wth symmetric-key encryption, an object may be encrypted with a
symmetric key derived froma passphrase (or other shared secret), or
a two-stage nechanismsimlar to the public-key nethod described
above in which a session key is itself encrypted with a synmetric

al gorithm keyed from a shared secret.

Both digital signature and confidentiality services may be applied to
the sane nessage. First, a signature is generated for the nessage
and attached to the nessage. Then the nessage plus signature is
encrypted using a synmetric session key. Finally, the session key is
encrypted using public-key encryption and prefixed to the encrypted
bl ock.

2.2. Authentication via Digital Signature

The digital signature uses a hash code or nessage digest algorithm
and a public-key signature algorithm The sequence is as follows:

1. The sender creates a nessage.
2. The sending software generates a hash code of the nessage.

3. The sending software generates a signature fromthe hash code
using the sender’s private key.

4. The binary signature is attached to the nessage.

5. The receiving software keeps a copy of the nessage signature.

6. The receiving software generates a new hash code for the received
message and verifies it using the message’s signature. |If the
verification is successful, the nessage is accepted as authentic.

2.3. Conpression

QpenPGP i npl ement ati ons SHOULD conpress the nmessage after applying
the signature but before encryption

Call as, et al St andards Track [Page 7]

RFC 4880 OpenPGP Message For mat Novenber 2007

If an inplenmentation does not inplenent conpression, its authors
shoul d be aware that nost QpenPGP nessages in the world are
conmpressed. Thus, it nay even be wi se for a space-constrained

i npl ementation to inplenent deconpression, but not conpression

Furt hernore, conpression has the added side effect that sone types of
attacks can be thwarted by the fact that slightly altered, conpressed
data rarely unconpresses w thout severe errors. This is hardly
rigorous, but it is operationally useful. These attacks can be
rigorously prevented by inplenmenting and using Mdification Detection
Codes as described in sections follow ng.

2.4. Conversion to Radi x-64

2.

3.

3.

OpenPGP' s underlying native representation for encrypted nessages,
signature certificates, and keys is a streamof arbitrary octets
Some systenms only permit the use of blocks consisting of seven-bit,
printable text. For transporting QoenPG™ s native raw binary octets
t hrough channels that are not safe to raw binary data, a printable
encodi ng of these binary octets is needed. QpenPGP provides the
service of converting the raw 8-bit binary octet streamto a stream
of printable ASCII characters, called Radi x-64 encodi ng or ASCI

Ar nor .

| mpl enent ati ons SHOULD provi de Radi x-64 conver si ons.

5. Signature-Only Applications

OpenPGP is designed for applications that use both encryption and
signatures, but there are a nunber of problens that are solved by a
signature-only inplenentation. Although this specification requires
both encryption and signatures, it is reasonable for there to be
subset inplenmentations that are non-conformant only in that they onmit
encryption.

Dat a El enent Fornmats
This section describes the data el enents used by QpenPGP.
1. Scal ar Nunbers
Scal ar nunbers are unsigned and are always stored in big-endian
format. Using n[k] to refer to the kth octet being interpreted, the
value of a two-octet scalar is ((n[0] << 8) + n[1l]). The value of a

four-octet scalar is ((n[0] << 24) + (n[1] << 16) + (n[2] << 8) +
n[3]).

Call as, et al St andards Track [Page 8]

RFC 4880 OpenPGP Message For mat Novenber 2007

3.2. Miltiprecision Integers
Mul ti precision integers (also called MPIs) are unsigned integers used
to hold large integers such as the ones used in cryptographic
cal cul ations
An MPl consists of two pieces: a two-octet scalar that is the length
of the MPlI in bits followed by a string of octets that contain the
actual integer.

These octets form a bi g-endi an nunber; a bi g-endi an nunber can be
made into an MPI by prefixing it with the appropriate |ength.

Exanpl es:
(all nunbers are in hexadeci nal)

The string of octets [00 01 01] forns an MPI with the value 1. The
string [00 09 01 FF] forms an MPl with the value of 511

Addi tional rules:

The size of an MPI is ((MPI.length + 7) / 8) + 2 octets.

The length field of an MPI describes the length starting fromits
nost significant non-zero bit. Thus, the MPI [00 02 01] is not
formed correctly. It should be [00 01 01].

Unused bits of an MPI MJST be zero.

Al so note that when an MPlI is encrypted, the length refers to the
plaintext MPI. It may be ill-formed in its ciphertext.

3.3. Key IDs
A Key IDis an eight-octet scalar that identifies a key.
| mpl enent ati ons SHOULD NOT assune that Key |IDs are unique. The
section "Enhanced Key Formats" bel ow describes how Key IDs are
f or med.

3.4. Text

Unl ess ot herwi se specified, the character set for text is the UTF-8
[RFC3629] encoding of Unicode [|SOL0646].

Call as, et al St andards Track [Page 9]

RFC 4880 OpenPGP Message For mat Novenber 2007

3.5. Tine Fields

Atime field is an unsigned four-octet nunber containing the nunber
of seconds el apsed since nidnight, 1 January 1970 UTC.

3.6. Keyrings

A keyring is a collection of one or nore keys in a file or database.
Traditionally, a keyring is sinply a sequential list of keys, but may
be any suitable database. It is beyond the scope of this standard to
di scuss the details of keyrings or other databases.

3.7. String-to-Key (S2K) Specifiers

String-to-key (S2K) specifiers are used to convert passphrase strings
into symretric-key encryption/decryption keys. They are used in two
pl aces, currently: to encrypt the secret part of private keys in the
private keyring, and to convert passphrases to encryption keys for
symretrically encrypted nessages.

3.7.1. String-to-Key (S2K) Specifier Types

There are three types of S2K specifiers currently supported, and
sone reserved val ues

I D S2K Type

0 Si mpl e S2K

1 Sal ted S2K

2 Reserved val ue

3 Iterated and Salted S2K

100 to 110 Private/Experinmental S2K
These are described in Sections 3.7.1.1 - 3.7.1.3.
3.7.1.1. Sinple S2K

This directly hashes the string to produce the key data. See bel ow
for how this hashing is done.

Cctet O: 0x00
Cctet 1: hash al gorithm

Si mpl e S2K hashes the passphrase to produce the session key. The

manner in which this is done depends on the size of the session key
(which will depend on the cipher used) and the size of the hash

Call as, et al St andards Track [Page 10]

RFC 4880 OpenPGP Message For mat Novenber 2007

algorithms output. |f the hash size is greater than the session key
size, the high-order (leftnost) octets of the hash are used as the
key.

If the hash size is less than the key size, nultiple instances of the
hash context are created -- enough to produce the required key data.
These instances are preloaded with 0, 1, 2, ... octets of zeros (that
is to say, the first instance has no prel oadi ng, the second gets

prel oaded with 1 octet of zero, the third is preloaded with two
octets of zeros, and so forth).

As the data is hashed, it is given independently to each hash
context. Since the contexts have been initialized differently, they
will each produce different hash output. Once the passphrase is
hashed, the output data fromthe nultiple hashes is concatenated,
first hash leftnost, to produce the key data, with any excess octets
on the right discarded.

3.7.1.2. Salted S2K
This includes a "salt" value in the S2K specifier -- sonme arbitrary

data -- that gets hashed along with the passphrase string, to help
prevent dictionary attacks.

Cctet O: 0x01
Cctet 1: hash al gorithm
Cctets 2-9: 8-octet salt value

Salted S2K is exactly like Sinple S2K, except that the input to the
hash function(s) consists of the 8 octets of salt fromthe S2K
specifier, followed by the passphrase.

3.7.1.3. Ilterated and Salted S2K

This includes both a salt and an octet count. The salt is conbi ned
with the passphrase and the resulting value is hashed repeatedly.
This further increases the anount of work an attacker nust do to try
di ctionary attacks.

Cctet O: 0x03

Cctet 1: hash al gorithm

Cctets 2-9: 8-octet salt value

Cctet 10: count, a one-octet, coded val ue

Call as, et al St andards Track [Page 11]

RFC 4880 OpenPGP Message For mat Novenber 2007

The count is coded into a one-octet nunber using the foll ow ng
fornul a:

#defi ne EXPBI AS 6
count = ((Int32)16 + (c & 15)) << ((c >> 4) + EXPBI AS)

The above formula is in C, where "Int32" is a type for a 32-bit
integer, and the variable "c" is the coded count, Cctet 10.

Iterated-Salted S2K hashes the passphrase and salt data multiple
times. The total nunber of octets to be hashed is specified in the
encoded count in the S2K specifier. Note that the resulting count
value is an octet count of how many octets will be hashed, not an
iteration count.

Initially, one or nore hash contexts are set up as with the other S2K
al gorithnms, depending on how many octets of key data are needed.

Then the salt, followed by the passphrase data, is repeatedly hashed
until the nunber of octets specified by the octet count has been
hashed. The one exception is that if the octet count is less than
the size of the salt plus passphrase, the full salt plus passphrase
wi |l be hashed even though that is greater than the octet count.

After the hashing is done, the data is unloaded fromthe hash
context(s) as with the other S2K al gorithns.

3.7.2. String-to-Key Usage

| mpl enent ati ons SHOULD use salted or iterated-and-salted S2K
specifiers, as sinple S2K specifiers are nore vulnerable to
di ctionary attacks.

3.7.2.1. Secret-Key Encryption

An S2K specifier can be stored in the secret keyring to specify how
to convert the passphrase to a key that unlocks the secret data.

A der versions of PGP just stored a cipher algorithmoctet preceding
the secret data or a zero to indicate that the secret data was
unencrypted. The MD5 hash function was al ways used to convert the
passphrase to a key for the specified cipher algorithm

For compatibility, when an S2K specifier is used, the special value
254 or 255 is stored in the position where the hash al gorithm octet
woul d have been in the old data structure. This is then followed

i mediately by a one-octet algorithmidentifier, and then by the S2K
speci fier as encoded above.

Call as, et al St andards Track [Page 12]

RFC 4880 OpenPGP Message For mat Novenber 2007

Therefore, preceding the secret data there will be one of these
possibilities:

0: secret data is unencrypted (no passphrase)
255 or 254: followed by algorithmoctet and S2K specifier
Ci pher alg: use Sinple S2K al gorithm usi ng MD5 hash

This last possibility, the cipher algorithmnunber with an inplicit
use of MD5 and I DEA, is provided for backward compatibility; it MY
be understood, but SHOULD NOT be generated, and is deprecated.

These are followed by an Initial Vector of the sane length as the
bl ock size of the cipher for the decryption of the secret values, if
they are encrypted, and then the secret-key val ues thensel ves.

3.7.2.2. Symmetric-Key Message Encryption

QpenPGP can create a Synmmetric-key Encrypted Session Key (ESK) packet
at the front of a nessage. This is used to allow S2K specifiers to
be used for the passphrase conversion or to create nessages with a

m x of symmetric-key ESKs and public-key ESKs. This allows a nessage
to be decrypted either with a passphrase or a public-key pair.

PGP 2. X always used IDEA with Sinple string-to-key conversion when
encrypting a nessage with a synmetric algorithm This is deprecated,
but MAY be used for backward-conpatibility.

4. Packet Syntax

This section describes the packets used by OQpenPGP.

4.1. Overview

An OpenPGP nessage is constructed froma nunber of records that are
traditionally call ed packets. A packet is a chunk of data that has a
tag specifying its neaning. An OpenPGP nessage, keyring,

certificate, and so forth consists of a nunmber of packets. Sone of

t hose packets nmay contain other CpenPGP packets (for exanple, a
conpressed data packet, when unconpressed, contains QpenPGP packets).

Each packet consists of a packet header, followed by the packet body.
The packet header is of variable |ength.

4.2. Packet Headers
The first octet of the packet header is called the "Packet Tag". It

determ nes the format of the header and denotes the packet contents.
The renai nder of the packet header is the length of the packet.

Call as, et al St andards Track [Page 13]

RFC 4880 OpenPGP Message For mat Novenber 2007

Note that the nost significant bit is the leftnost bit, called bit 7.
A mask for this bit is 0x80 in hexadeci nal.

Bit 7 -- Al ways one
Bit 6 -- New packet format if set

PGP 2.6.x only uses old format packets. Thus, software that
interoperates with those versions of PGP nust only use old format
packets. If interoperability is not an issue, the new packet fornat
is RECOWENDED. Note that old format packets have four bits of
packet tags, and new fornmat packets have six; some features cannot be
used and still be backward-conpati bl e.

Al'so note that packets with a tag greater than or equal to 16 MJST
use new format packets. The old format packets can only express tags
| ess than or equal to 15.

ad format packets contain:

Bits 5-2 -- packet tag
Bits 1-0 -- length-type

New format packets contain:
Bits 5-0 -- packet tag
4.2.1. dd Format Packet Lengths

The meaning of the length-type in old format packets is:

0 - The packet has a one-octet length. The header is 2 octets |ong.

1 - The packet has a two-octet length. The header is 3 octets |ong.

2 - The packet has a four-octet length. The header is 5 octets |ong.

3 - The packet is of indeternminate |length. The header is 1 octet
I ong, and the inplenentation nmust detern ne how | ong the packet
is. |If the packet is in a file, this neans that the packet
extends until the end of the file. |In general, an inplenentation
SHOULD NOT use indeterm nate-1length packets except where the end
of the data will be clear fromthe context, and even then it is
better to use a definite length, or a new format header. The new

format headers descri bed bel ow have a nmechani sm for precisely
encodi ng data of indeterm nate | ength.

Call as, et al St andards Track [Page 14]

RFC 4880 OpenPGP Message For mat Novenber 2007

4.2.2. New Fornmat Packet Lengths
New format packets have four possible ways of encoding | ength:

1. A one-octet Body Length header encodes packet |engths of up to 191
octets.

2. A two-octet Body Length header encodes packet |engths of 192 to
8383 octets.

3. Afive-octet Body Length header encodes packet lengths of up to
4,294,967, 295 (OxXFFFFFFFF) octets in length. (This actually
encodes a four-octet scal ar nunber.)

4. When the length of the packet body is not known in advance by the
i ssuer, Partial Body Length headers encode a packet of
indetermnate length, effectively making it a stream

4.2.2.1. One-Cctet Lengths

A one-octet Body Length header encodes a length of 0 to 191 octets.

This type of length header is recogni zed because the one octet val ue

is less than 192. The body length is equal to:

bodyLen = 1st _octet;
4.2.2.2. Two-Cctet Lengths

A two-octet Body Length header encodes a |length of 192 to 8383

octets. It is recognized because its first octet is in the range 192

to 223. The body length is equal to:

bodyLen = ((1st_octet - 192) << 8) + (2nd_octet) + 192
4.2.2.3. Five-Cctet Lengths

A five-octet Body Length header consists of a single octet holding
the val ue 255, followed by a four-octet scalar. The body length is
equal to:

bodyLen = (2nd_octet << 24) | (3rd_octet << 16)
(4th_octet << 8) | 5th_octet

This basic set of one, two, and five-octet lengths is also used
internally to sone packets.

Call as, et al St andards Track [Page 15]

RFC 4880 OpenPGP Message For mat Novenber 2007

4.2.2.4. Partial Body Lengths

A Partial Body Length header is one octet |ong and encodes the |ength
of only part of the data packet. This length is a power of 2, from1l
to 1,073,741,824 (2 to the 30th power). It is recognized by its one
octet value that is greater than or equal to 224, and | ess than 255.
The Partial Body Length is equal to:

parti al BodyLen = 1 << (1st_octet & Ox1F);

Each Partial Body Length header is followed by a portion of the
packet body data. The Partial Body Length header specifies this
portion’s length. Another |ength header (one octet, two-octet,
five-octet, or partial) follows that portion. The last |ength header
in the packet MUST NOT be a Partial Body Length header. Partial Body
Length headers may only be used for the non-final parts of the
packet .

Note al so that the | ast Body Length header can be a zero-length
header .

An i npl enentation MAY use Partial Body Lengths for data packets, be
they literal, conpressed, or encrypted. The first partial length
MUST be at |east 512 octets long. Partial Body Lengths MJST NOT be
used for any ot her packet types.

4.2.3. Packet Length Exanples

These exanpl es show ways that new format packets mi ght encode the
packet | engths.

A packet with Iength 100 may have its length encoded in one octet:
0x64. This is followed by 100 octets of data.

A packet with Iength 1723 may have its length encoded in two octets:
0xC5, OxFB. This header is followed by the 1723 octets of data.

A packet with I ength 100000 nmay have its length encoded in five
octets: OxFF, 0x00, 0x01, 0x86, OxAO.

It might also be encoded in the follow ng octet stream OxEF, first
32768 octets of data; OxEl, next two octets of data; OxEO, next one
octet of data; OxFO, next 65536 octets of data; OxC5, OxDD, |ast 1693
octets of data. This is just one possible encoding, and many
variations are possible on the size of the Partial Body Length
headers, as long as a regul ar Body Length header encodes the | ast
portion of the data.

Call as, et al St andards Track [Page 16]

RFC 4880 OpenPGP Message For mat Novenber 2007

Pl ease note that in all of these explanations, the total |ength of
the packet is the Iength of the header(s) plus the length of the
body.

4.3. Packet Tags

The packet tag denotes what type of packet the body holds. Note that
old format headers can only have tags | ess than 16, whereas new
format headers can have tags as great as 63. The defined tags (in
decinmal) are as foll ows:

0 -- Reserved - a packet tag MJUST NOT have this val ue
1 -- Public-Key Encrypted Session Key Packet

2 -- Signature Packet

3 -- Symmetric-Key Encrypted Session Key Packet

4 -- One-Pass Signature Packet

5 -- Secret-Key Packet

6 -- Public-Key Packet

7 -- Secret-Subkey Packet

8 -- Conpressed Data Packet

9 -- Symmetrically Encrypted Data Packet

10 -- Marker Packet

11 -- Literal Data Packet

12 -- Trust Packet

13 -- User | D Packet

14 -- Public- Subkey Packet

17 -- User Attribute Packet

18 -- Sym Encrypted and Integrity Protected Data Packet
19 -- Modification Detection Code Packet

60 to 63 -- Private or Experinental Val ues

5. Packet Types
5.1. Public-Key Encrypted Session Key Packets (Tag 1)

A Public-Key Encrypted Session Key packet holds the session key used
to encrypt a nmessage. Zero or nore Public-Key Encrypted Session Key
packets and/ or Symetric-Key Encrypted Session Key packets nmay
precede a Symmetrically Encrypted Data Packet, which holds an
encrypted nmessage. The nmessage is encrypted with the session key,
and the session key is itself encrypted and stored in the Encrypted
Session Key packet(s). The Symmetrically Encrypted Data Packet is
preceded by one Public-Key Encrypted Session Key packet for each
QpenPGP key to which the nessage is encrypted. The recipient of the
nmessage finds a session key that is encrypted to their public key,
decrypts the session key, and then uses the session key to decrypt

t he message.

Call as, et al St andards Track [Page 17]

RFC 4880 OpenPGP Message For mat Novenber 2007

The body of this packet consists of:

- A one-octet nunber giving the version nunber of the packet type.
The currently defined value for packet version is 3.

- An eight-octet nunber that gives the Key ID of the public key to
whi ch the session key is encrypted. |If the session key is
encrypted to a subkey, then the Key ID of this subkey is used
here instead of the Key ID of the primary key.

- A one-octet nunber giving the public-key al gorithm used.

- Astring of octets that is the encrypted session key. This
string takes up the renminder of the packet, and its contents are
dependent on the public-key al gorithm used.

Al gorithm Specific Fields for RSA encryption

- multiprecision integer (MPl) of RSA encrypted value nt*e nod n.
Al gorithm Specific Fields for Elgamal encryption:

- MPI of Elganmal (Diffie-Hellnman) value g**k nod p.

- MPlI of Elganal (Diffie-Hellman) value m* y**k nod p.

The value "ni' in the above fornmulas is derived fromthe session key
as follows. First, the session key is prefixed with a one-octet
algorithmidentifier that specifies the symmetric encryption
algorithmused to encrypt the following Symmetrically Encrypted Data
Packet. Then a two-octet checksumis appended, which is equal to the
sum of the preceding session key octets, not including the algorithm
identifier, nodul o 65536. This value is then encoded as described in
PKCS#1 bl ock encodi ng EME- PKCS1-v1 5 in Section 7.2.1 of [RFC3447] to
formthe "m' value used in the formulas above. See Section 13.1 of
this docunent for notes on QpenPG”' s use of PKCS#1

Not e that when an inplenentation forns several PKESKs with one
session key, forming a nmessage that can be decrypted by several keys,
the inplenmentati on MUST nake a new PKCS#1 encodi ng for each key.

An i npl enentation MAY accept or use a Key ID of zero as a "wild card"
or "speculative" Key ID. In this case, the receiving inplenentation
would try all available private keys, checking for a valid decrypted
session key. This format hel ps reduce traffic analysis of messages.

Call as, et al St andards Track [Page 18]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2. Signature Packet (Tag 2)

A Signature packet describes a binding between sone public key and
sonme data. The nobst common signatures are a signature of a file or a
bl ock of text, and a signature that is a certification of a User ID

Two versions of Signature packets are defined. Version 3 provides

basic signature information, while version 4 provides an expandabl e
format with subpackets that can specify nore infornmation about the

signature. PGP 2.6.x only accepts version 3 signatures.

| npl enent ati ons SHOULD accept V3 signatures. |nplenentations SHOULD
generate V4 signatures

Note that if an inplenmentation is creating an encrypted and si gned
message that is encrypted to a V3 key, it is reasonable to create a
V3 signature.

5.2.1. Signature Types

There are a nunber of possible meanings for a signature, which are
indicated in a signature type octet in any given signature. Please
note that the vagueness of these neanings is not a flaw, but a
feature of the system Because OpenPGP places final authority for
validity upon the receiver of a signature, it nmay be that one
signer’s casual act night be nore rigorous than sonme other
authority’'s positive act. See Section 5.2.4, "Conputing Signatures"”
for detailed information on how to conpute and verify signatures of
each type

These neanings are as foll ows:

0x00: Signature of a binary docunent.
This means the signer owns it, created it, or certifies that it
has not been nodifi ed.

0x01: Signature of a canonical text docunent.
This neans the signer owmns it, created it, or certifies that it
has not been nodified. The signature is calcul ated over the text
data with its line endings converted to <CR><LF>.

0x02: St andal one signature.
This signature is a signature of only its own subpacket contents.
It is calculated identically to a signature over a zero-length
bi nary docunent. Note that it doesn’t nmake sense to have a V3
st andal one si gnature.

Call as, et al St andards Track [Page 19]

RFC 4880 OpenPGP Message For mat Novenber 2007

0x10: Ceneric certification of a User ID and Public-Key packet.
The issuer of this certification does not nmake any particul ar
assertion as to how well the certifier has checked that the owner
of the key is in fact the person described by the User |D

0x11: Persona certification of a User ID and Public-Key packet.
The issuer of this certification has not done any verification of
the claimthat the owner of this key is the User ID specified.

0x12: Casual certification of a User ID and Public-Key packet.
The issuer of this certification has done sone casua
verification of the claimof identity.

0x13: Positive certification of a User I D and Public-Key packet.
The issuer of this certification has done substanti al
verification of the claimof identity.

Most OpenPGP i npl enent ati ons nake their "key signatures" as 0x10
certifications. Sone inplenentations can issue 0x11-0x13
certifications, but few differentiate between the types.

0x18: Subkey Bi ndi ng Signature
This signature is a statement by the top-1level signing key that
indicates that it owns the subkey. This signature is calcul ated
directly on the primary key and subkey, and not on any User |ID or
ot her packets. A signature that binds a signing subkey MJUST have
an Enbedded Signature subpacket in this binding signature that
contains a 0x19 signature nmade by the signing subkey on the
primary key and subkey.

0x19: Prinmary Key Binding Signature
This signature is a statement by a signing subkey, indicating
that it is owed by the prinmary key and subkey. This signature
is calculated the sane way as a 0x18 signature: directly on the
primary key and subkey, and not on any User ID or other packets.

Ox1F: Signature directly on a key
This signature is calculated directly on a key. It binds the
information in the Signature subpackets to the key, and is
appropriate to be used for subpackets that provide infornmation
about the key, such as the Revocation Key subpacket. It is also
appropriate for statenents that non-self certifiers want to nake
about the key itself, rather than the binding between a key and a
namne.

Call as, et al St andards Track [Page 20]

RFC 4880 OpenPGP Message For mat Novenber 2007

0x20: Key revocation signature

The signature is calculated directly on the key being revoked. A
revoked key is not to be used. Only revocation signatures by the
key being revoked, or by an authorized revocation key, should be
consi dered valid revocation signatures.

0x28: Subkey revocation signature

The signature is calculated directly on the subkey being revoked.
A revoked subkey is not to be used. Only revocation signatures
by the top-level signature key that is bound to this subkey, or
by an aut horized revocation key, should be considered valid
revocati on signatures

0x30: Certification revocation signature

This signature revokes an earlier User ID certification signature
(signature class 0x10 through 0x13) or direct-key signature
(Ox1F). It should be issued by the same key that issued the
revoked signature or an authorized revocation key. The signature
is conputed over the sane data as the certificate that it

revokes, and should have a |later creation date than that
certificate.

0x40: Ti mestanp signature.

This signature is only neaningful for the tinmestanp contained in
it.

0x50: Third-Party Confirmation signature.

5.2. 2.
The
Cal | as,

This signature is a signature over sone other QpenPGP Signature
packet(s). It is analogous to a notary seal on the signed data.
A third-party signature SHOULD i ncl ude Signature Target
subpacket(s) to give easy identification. Note that we really do
mean SHOULD. There are plausible uses for this (such as a blind
party that only sees the signature, not the key or source
docunent) that cannot include a target subpacket.

Version 3 Signature Packet Fornat
body of a version 3 Signature Packet contains:
One-octet version nunber (3).
One-octet length of foll owing hashed material. MJST be 5.

- One-octet signature type

- Four-octet creation tine.

Ei ght-octet Key I D of signer.

et al St andards Track [Page 21]

RFC 4880 OpenPGP Message For mat Novenber 2007

- One-octet public-key algorithm
- One-octet hash algorithm
- Two-octet field holding left 16 bits of signed hash val ue.

- One or nore nultiprecision integers conprising the signature.
This portion is algorithmspecific, as described bel ow

The concatenation of the data to be signed, the signature type, and
creation time fromthe Signature packet (5 additional octets) is
hashed. The resulting hash value is used in the signature al gorithm
The high 16 bits (first two octets) of the hash are included in the
Si gnature packet to provide a quick test to reject sone invalid

si gnat ures

Al gorithm Specific Fields for RSA signatures:

- multiprecision integer (MPl) of RSA signature value nt*d nod n.
Al gorithm Specific Fields for DSA signatures:

- MPI of DSA value r.

- MPI of DSA val ue s.
The signature calculation is based on a hash of the signed data, as
descri bed above. The details of the calculation are different for
DSA signatures than for RSA signatures
Wth RSA signatures, the hash value is encoded usi ng PKCS#1 encodi ng
type EMBA-PKCS1-v1 5 as described in Section 9.2 of RFC 3447. This
requires inserting the hash value as an octet string into an ASN. 1
structure. The object identifier for the type of hash being used is
included in the structure. The hexadeci mal representations for the
currently defined hash algorithns are as foll ows:

- MD5: 0x2A, 0x86, 0x48, 0x86, OxF7, 0x0D, 0x02, 0x05

- RI PEMD-160: 0x2B, 0x24, 0x03, 0x02, 0x01

- SHA-1: 0x2B, OxOE, 0x03, 0x02, Ox1A

- SHA224: 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04
- SHA256: 0x60, 0x86, 0x48, 0x01, O0x65, 0x03, 0x04, 0x02, 0x01
- SHA384: 0x60, 0x86, 0x48, 0x01, O0x65, 0x03, 0x04, 0x02, 0x02

Call as, et al St andards Track [Page 22]

RFC 4880 OpenPGP Message For mat Novenber 2007

- SHA512: 0x60, 0x86, 0x48, 0x01, O0x65, 0x03, 0x04, 0x02, 0x03
The ASN. 1 (bject ldentifiers (ODs) are as foll ows:
- MD5: 1.2.840.113549.2.5

- RIPEMD-160: 1.3.36.3.2.1

- SHA-1: 1.3.14.3.2.26

- SHA224: 2.16.840.1.101.3.4.2. 4
- SHA256: 2.16.840.1.101.3.4.2.1
- SHA384: 2.16.840.1.101.3.4.2.2
- SHA512: 2.16.840.1.101.3.4.2.3

The full hash prefixes for these are as foll ows:

MD5: 0x30, 0x20, 0x30, Ox0C, 0x06, 0x08, O0x2A, 0x86,
0x48, 0x86, OxF7, 0x0D, 0x02, 0x05, 0x05, 0x00,
0x04, 0x10

Rl PEMD- 160: 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x24,
0x03, 0x02, 0x01, 0Ox05, 0x00, 0x04, O0x14

SHA- 1: 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, OxOE
0x03, 0x02, Ox1A, 0x05, 0x00, 0x04, O0x14

SHA224: 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, Ox65, 0x03, 0x04, 0x02, 0x04, 0xO05,
0x00, 0x04, Oxi1C

SHA256: 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0xO05,
0x00, 0x04, 0x20

SHA384: 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, O0x65, 0x03, 0x04, 0x02, 0x02, 0xO05,
0x00, 0x04, 0x30

SHA512: 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0Ox65, 0x03, 0x04, 0x02, 0x03, 0xO05,
0x00, 0x04, 0x40

DSA si gnatures MJIST use hashes that are equal in size to the nunber
of bits of q, the group generated by the DSA key’'s generator val ue.

Call as, et al St andards Track [Page 23]

RFC 4880 OpenPGP Message For mat Novenber 2007

If the output size of the chosen hash is larger than the nunber of
bits of g, the hash result is truncated to fit by taking the nunber
of leftnost bits equal to the number of bits of q. This (possibly
truncat ed) hash function result is treated as a nunber and used
directly in the DSA signature al gorithm

5.2.3. Version 4 Signature Packet Fornat
The body of a version 4 Signature packet contains:

- One-octet version nunber (4).

- One-octet signature type

- One-octet public-key algorithm

- One-octet hash al gorithm

- Two-octet scalar octet count for followi ng hashed subpacket data.
Note that this is the length in octets of all of the hashed
subpackets; a pointer increnented by this nunber will skip over
t he hashed subpackets.

- Hashed subpacket data set (zero or nore subpackets).

- Two-octet scalar octet count for the foll ow ng unhashed subpacket
data. Note that this is the length in octets of all of the
unhashed subpackets; a pointer increnented by this nunber wll
ski p over the unhashed subpackets.

- Unhashed subpacket data set (zero or nore subpackets).

- Two-octet field holding the left 16 bits of the signed hash
val ue.

- One or nore nultiprecision integers conprising the signature.
This portion is algorithmspecific, as described above.

The concatenation of the data being signed and the signature data
fromthe version nunber through the hashed subpacket data (inclusive)
is hashed. The resulting hash value is what is signed. The left 16
bits of the hash are included in the Signature packet to provide a
qui ck test to reject sonme invalid signatures.

There are two fields consisting of Signature subpackets. The first

field is hashed with the rest of the signature data, while the second
i s unhashed. The second set of subpackets is not cryptographically

Call as, et al St andards Track [Page 24]

RFC 4880 OpenPGP Message For mat Novenber 2007

protected by the signature and should include only advisory
i nformation.

The algorithms for converting the hash function result to a signature
are described in a section bel ow

5.2.3.1. Signature Subpacket Specification

A subpacket data set consists of zero or nore Signature subpackets.
In Signature packets, the subpacket data set is preceded by a two-
octet scalar count of the length in octets of all the subpackets. A
poi nter incremented by this nunmber will skip over the subpacket data
set.

Each subpacket consists of a subpacket header and a body. The header
consi sts of:

- the subpacket length (1, 2, or 5 octets),
- the subpacket type (1 octet),
and is foll owed by the subpacket-specific data.

The I ength includes the type octet but not this length. Its fornmat
is simlar to the "new' format packet header |engths, but cannot have
Partial Body Lengths. That is:

if the 1st octet < 192, then
| engthOf Length = 1
subpacket Len = 1st_octet

if the 1st octet >= 192 and < 255, then
| engt hOf Length = 2
subpacketLen = ((1st_octet - 192) << 8) + (2nd_octet) + 192

if the 1st octet = 255, then
| engthOf Length = 5
subpacket length = [four-octet scalar starting at 2nd_octet]

The val ue of the subpacket type octet may be:

Reserved

Reserved

Signature Creation Tine
Si gnature Expiration Tine
Exportable Certification
Trust Signature

Regul ar Expr essi on

OB WNEO
L O T I O I A |

Call as, et al St andards Track [Page 25]

RFC 4880 OpenPGP Message For mat Novenber 2007

7 = Revocabl e
8 = Reserved
9 = Key Expiration Tine
10 = Pl acehol der for backward conpatibility
11 = Preferred Symmetric Al gorithns
12 = Revocation Key
13 = Reserved
14 = Reserved
15 = Reserved
16 = Issuer
17 = Reserved
18 = Reserved
19 = Reserved
20 = Notation Data
21 = Preferred Hash Al gorithns
22 = Preferred Conpression Al gorithns
23 = Key Server Preferences
24 = Preferred Key Server
25 = Primary User |ID
26 = Policy URI
27 = Key Fl ags
28 = Signer’s User ID
29 = Reason for Revocation
30 = Features
31 = Signature Target
32 = Enbedded Signature
100 To 110 = Private or experinmenta

An i nmpl enentati on SHOULD i gnore any subpacket of a type that it does
not recognize

Bit 7 of the subpacket type is the "critical" bit. |If set, it
denotes that the subpacket is one that is critical for the eval uator
of the signature to recognize. |If a subpacket is encountered that is

marked critical but is unknown to the evaluating software, the
eval uat or SHOULD consi der the signature to be in error

An eval uator may "recogni ze" a subpacket, but not inplenent it. The
purpose of the critical bit is to allowthe signer to tell an

eval uator that it would prefer a new, unknown feature to generate an
error than be ignored.

| mpl enent ati ons SHOULD i npl ement the three preferred al gorithm
subpackets (11, 21, and 22), as well as the "Reason for Revocation"
subpacket. Note, however, that if an inplenentation chooses not to
i npl ement sone of the preferences, it is required to behave in a
polite manner to respect the wi shes of those users who do inplenment
t hese preferences.

Call as, et al St andards Track [Page 26]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.2. Signature Subpacket Types

A nunber of subpackets are currently defined. Sone subpackets apply
to the signature itself and sonme are attributes of the key.
Subpackets that are found on a self-signature are placed on a
certification made by the key itself. Note that a key nay have nore
than one User ID, and thus nay have nore than one sel f-signature, and
di ffering subpackets.

A subpacket may be found either in the hashed or unhashed subpacket
sections of a signature. |If a subpacket is not hashed, then the
information in it cannot be considered definitive because it is not
part of the signature proper.

5.2.3.3. Notes on Self-Signatures

A self-signature is a binding signature nade by the key to which the
signature refers. There are three types of self-signatures, the
certification signatures (types 0x10-0x13), the direct-key signature
(type Ox1F), and the subkey binding signature (type 0x18). For
certification self-signatures, each User ID nmay have a self-
signature, and thus different subpackets in those self-signatures.
For subkey bindi ng signatures, each subkey in fact has a self-
signature. Subpackets that appear in a certification self-signature
apply to the user nane, and subpackets that appear in the subkey
self-signature apply to the subkey. Lastly, subpackets on the
direct-key signature apply to the entire key.

| mpl enenting software should interpret a self-signature’s preference
subpackets as narrowly as possible. For exanple, suppose a key has
two user nanes, Alice and Bob. Suppose that Alice prefers the
symmetric al gorithm CAST5, and Bob prefers IDEA or TripleDES. |If the
software |l ocates this key via Alice’s nanme, then the preferred
algorithmis CAST5; if software |ocates the key via Bob’s nane, then
the preferred algorithmis IDEA. If the key is located by Key ID
the algorithmof the primary User ID of the key provides the
preferred symetric al gorithm

Revoking a self-signature or allowing it to expire has a semantic
meani ng that varies with the signature type. Revoking the self-
signature on a User ID effectively retires that user name. The
self-signature is a statenent, "My nane X is tied to ny signing key
K' and is corroborated by other users’ certifications. |f another
user revokes their certification, they are effectively saying that
they no longer believe that nane and that key are tied together
Simlarly, if the users thenselves revoke their self-signature, then
the users no | onger go by that nanme, no | onger have that enai
address, etc. Revoking a binding signature effectively retires that

Call as, et al St andards Track [Page 27]

RFC 4880 OpenPGP Message For mat Novenber 2007

subkey. Revoking a direct-key signature cancels that signature.
Pl ease see the "Reason for Revocation" subpacket (Section 5.2.3.23)
for nore relevant detail.
Since a self-signature contains inportant information about the key's
use, an inplenmentation SHOULD allow the user to rewite the self-
signature, and inportant infornmation in it, such as preferences and
key expiration.
It is good practice to verify that a self-signature inported into an
i npl enment ati on doesn’t advertise features that the inplenentation
doesn’t support, rewiting the signature as appropriate.
An inplenentation that encounters nultiple self-signatures on the
sanme object may resolve the anmbiguity in any way it sees fit, but it
i's RECOWENDED that priority be given to the nost recent self-
si gnature.

5.2.3.4. Signature Creation Tine
(4-octet tinme field)
The tinme the signature was nmade
MUST be present in the hashed area.

5.2.3.5. Issuer
(8-octet Key I1D)
The QpenPGP Key I D of the key issuing the signature.

5.2.3.6. Key Expiration Tine
(4-octet time field)
The validity period of the key. This is the nunber of seconds after
the key creation tine that the key expires. |If this is not present
or has a value of zero, the key never expires. This is found only on
a self-signature

5.2.3.7. Preferred Symmetric Al gorithns
(array of one-octet val ues)
Symretric al gorithm nunbers that indicate which algorithns the key

hol der prefers to use. The subpacket body is an ordered |ist of
octets with the nost preferred listed first. It is assuned that only

Call as, et al St andards Track [Page 28]

RFC 4880 OpenPGP Message For mat Novenber 2007

algorithns listed are supported by the recipient’s software.
Al gorithm nunmbers are in Section 9. This is only found on a self-
si gnature.

5.2.3.8. Preferred Hash Al gorithns
(array of one-octet val ues)

Message di gest al gorithm nunbers that indicate which algorithnms the
key holder prefers to receive. Like the preferred symetric
algorithnms, the list is ordered. Al gorithmnunbers are in Section 9.
This is only found on a sel f-signature.

5.2.3.9. Preferred Conpression Al gorithns
(array of one-octet val ues)

Conpression al gorithm nunbers that indicate which algorithns the key
hol der prefers to use. Like the preferred symmetric algorithns, the
list is ordered. Algorithmnunbers are in Section 9. |If this
subpacket is not included, ZIP is preferred. A zero denotes that
unconpressed data is preferred; the key holder’s software m ght have
no conpression software in that inplenmentation. This is only found
on a self-signature.

5.2.3.10. Signature Expiration Tine
(4-octet time field)
The validity period of the signature. This is the nunber of seconds
after the signature creation tinme that the signature expires. |If
this is not present or has a value of zero, it never expires.
5.2.3.11. Exportable Certification
(1 octet of exportability, O for not, 1 for exportable)
Thi s subpacket denotes whether a certification signature is
"exportable", to be used by other users than the signature’ s issuer
The packet body contains a Boolean flag indicating whether the
signature is exportable. |If this packet is not present, the
certification is exportable; it is equivalent to a flag containing a
1

Non-exportable, or "local", certifications are signatures nade by a
user to mark a key as valid within that user’s inplenentation only.

Call as, et al St andards Track [Page 29]

RFC 4880 OpenPGP Message For mat Novenber 2007

Thus, when an inplenentation prepares a user’s copy of a key for
transport to another user (this is the process of "exporting" the
key), any local certification signatures are deleted fromthe key.

The receiver of a transported key "inports” it, and likewise trins
any local certifications. In nornmal operation, there won't be any,
assunming the inport is perfornmed on an exported key. However, there
are instances where this can reasonably happen. For exanple, if an
i mpl enentation allows keys to be inported froma key database in
addition to an exported key, then this situation can arise.

Sone i nplenmentations do not represent the interest of a single user
(for example, a key server). Such inplenentations always trim]l ocal
certifications fromany key they handl e.

5.2.3.12. Revocable
(1 octet of revocability, 0 for not, 1 for revocable)

Signature’s revocability status. The packet body contains a Bool ean
flag indicating whether the signature is revocable. Signatures that
are not revocabl e have any | ater revocation signatures ignored. They
represent a comm tnent by the signer that he cannot revoke his
signature for the life of his key. |If this packet is not present,
the signature is revocabl e.

5.2.3.13. Trust Signature
(1 octet "level" (depth), 1 octet of trust anount)

Si gner asserts that the key is not only valid but also trustworthy at
the specified level. Level 0 has the same nmeaning as an ordi nary
validity signature. Level 1 neans that the signed key is asserted to
be a valid trusted introducer, with the 2nd octet of the body
specifying the degree of trust. Level 2 nmeans that the signed key is
asserted to be trusted to issue level 1 trust signatures, i.e., that
it is a "meta introducer”. GCenerally, a level n trust signature
asserts that a key is trusted to issue level n-1 trust signatures.
The trust anpbunt is in a range from0-255, interpreted such that

val ues less than 120 indicate partial trust and val ues of 120 or
greater indicate conplete trust. Inplenentations SHOULD emt val ues
of 60 for partial trust and 120 for conplete trust.

Call as, et al St andards Track [Page 30]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.14. Regul ar Expression
(null-term nated regul ar expression)

Used in conjunction with trust Signature packets (of level > 0) to
limt the scope of trust that is extended. Only signatures by the
target key on User IDs that match the regul ar expression in the body
of this packet have trust extended by the trust Signature subpacket.
The regul ar expression uses the same syntax as the Henry Spencer’s
"al nost public domain" regul ar expression [REGEX] package. A
description of the syntax is found in Section 8 bel ow

5.2.3.15. Revocation Key

(1 octet of class, 1 octet of public-key algorithmID, 20 octets of
fingerprint)

Aut hori zes the specified key to issue revocation signatures for this
key. Cass octet nust have bit 0x80 set. |If the bit 0x40 is set,
then this nmeans that the revocation information is sensitive. O her
bits are for future expansion to other kinds of authorizations. This
is found on a self-signature.

If the "sensitive" flag is set, the keyholder feels this subpacket
contains private trust information that describes a real-world
sensitive relationship. |If this flag is set, inplenentations SHOULD
NOT export this signature to other users except in cases where the
data needs to be avail able: when the signature is being sent to the
designated revoker, or when it is acconpani ed by a revocation
signature fromthat revoker. Note that it nay be appropriate to

i solate this subpacket within a separate signature so that it is not
conbined with other subpackets that need to be exported.

5.2.3.16. Not ati on Dat a

(4 octets of flags, 2 octets of name length (M,
2 octets of value length (N)
M octets of nane data,
N octets of val ue data)

Thi s subpacket describes a "notation" on the signature that the

i ssuer wishes to nmake. The notation has a nanme and a val ue, each of
which are strings of octets. There nay be nore than one notation in
a signature. Notations can be used for any extension the issuer of
the signature cares to make. The "flags" field holds four octets of
fl ags.

Call as, et al St andards Track [Page 31]

RFC 4880 OpenPGP Message For mat Novenber 2007

Al'l undefined flags MJUST be zero. Defined flags are as foll ows:

First octet: 0x80 = human-readable. This note value is text.
O her octets: none.

Not ati on nanmes are arbitrary strings encoded in UTF-8. They reside
in two nanespaces: The | ETF nanespace and the user nanespace.

The | ETF nanmespace is registered with I ANA. These nanes MJST NOT
contain the "@ character (0x40). This is a tag for the user
namespace

Nanes in the user nanmespace consist of a UTF-8 string tag foll owed by
"@ followed by a DNS domain nane. Note that the tag MJST NOT
contain an "@ character. For exanple, the "sanple" tag used by
Exanpl e Corporation could be "sanpl e@xanpl e. cont.

Nanes in a user space are owned and controlled by the owners of that
domain. COCbviously, it's bad formto create a new nane in a DNS space
that you don't own.

Since the user nanespace is in the formof an email address,

i npl ementers MAY wish to arrange for that address to reach a person
who can be consulted about the use of the naned tag. Note that due
to UTF-8 encoding, not all valid user space nane tags are valid emil
addr esses.

If there is a critical notation, the criticality applies to that
specific notation and not to notations in general

5.2.3.17. Key Server Preferences
(N octets of flags)
This is a list of one-bit flags that indicate preferences that the
key hol der has about how the key is handl ed on a key server. Al
undefined flags MJST be zero.
First octet: 0x80 = No-nodify
the key hol der requests that this key only be nodified or updated
by the key holder or an adm nistrator of the key server

This is found only on a self-signature.

Call as, et al St andards Track [Page 32]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.18. Preferred Key Server
(String)

This is a URI of a key server that the key hol der prefers be used for
updates. Note that keys with nultiple User IDs can have a preferred
key server for each User ID. Note also that since this is a URI, the
key server can actually be a copy of the key retrieved by ftp, http,
finger, etc.

5.2.3.19. Primary User ID
(1 octet, Bool ean)

This is a flag in a User ID s self-signature that states whether this
User IDis the main User ID for this key. It is reasonable for an

i npl ementation to resolve anbiguities in preferences, etc. by
referring to the primary User ID. If this flag is absent, its val ue
is zero. |If nore than one User IDin a key is marked as primary, the
i mpl enentation nay resolve the anbiguity in any way it sees fit, but
it is RECOWENDED that priority be given to the User ID with the nost
recent self-signature

When appearing on a self-signature on a User |ID packet, this
subpacket applies only to User |ID packets. Wen appearing on a
self-signature on a User Attribute packet, this subpacket applies
only to User Attribute packets. That is to say, there are two

di fferent and i ndependent "prinmaries" -- one for User |IDs, and one
for User Attributes.

5.2.3.20. Policy UR
(String)

Thi s subpacket contains a URI of a docunent that describes the policy
under which the signature was issued.

5.2.3.21. Key Flags
(N octets of flags)
Thi s subpacket contains a list of binary flags that hold i nformation
about a key. It is a string of octets, and an inplenmentati on MJST
NOT assune a fixed size. This is so it can grow over tine. |If a

list is shorter than an inplenmentati on expects, the unstated fl ags
are considered to be zero. The defined flags are as foll ows:

Call as, et al St andards Track [Page 33]

RFC 4880 OpenPGP Message For mat Novenber 2007

First octet:

0x01 - This key may be used to certify other keys.
0x02 - This key may be used to sign data.

0x04 - This key may be used to encrypt communicati ons.
0x08 - This key may be used to encrypt storage.

0x10 - The private conponent of this key may have been split
by a secret-sharing nechani sm

0x20 - This key may be used for authentication

0x80 - The private conponent of this key may be in the
possession of nore than one person

Usage notes:

The flags in this packet may appear in self-signatures or in
certification signatures. They mean different things depending on
who is making the statenent -- for exanple, a certification signature
that has the "sign data" flag is stating that the certification is
for that use. On the other hand, the "comunications encryption”
flag in a self-signature is stating a preference that a given key be
used for comunications. Note however, that it is a thorny issue to
determ ne what is "comunications" and what is "storage". This
decision is left wholly up to the inplenmentation; the authors of this
docunent do not claimany special wi sdomon the issue and realize
that accepted opi nion nay change.

The "split key" (0x10) and "group key" (0x80) flags are placed on a
self-signature only; they are neaningless on a certification
signature. They SHOULD be placed only on a direct-key signature
(type Ox1F) or a subkey signature (type 0x18), one that refers to the
key the flag applies to.

5.2.3.22. Signer’'s User ID
(String)
Thi s subpacket allows a keyholder to state which User IDis
responsi ble for the signing. Mny keyhol ders use a single key for
di fferent purposes, such as business conmuni cations as well as

personal comunications. This subpacket allows such a keyhol der to
state which of their roles is naking a signature.

Call as, et al St andards Track [Page 34]

RFC 4880 OpenPGP Message For mat Novenber 2007
Thi s subpacket is not appropriate to use to refer to a User Attribute
packet .

5.2.3.23. Reason for Revocation
(1 octet of revocation code, N octets of reason string)

Thi s subpacket is used only in key revocation and certification
revocation signatures. It describes the reason why the key or

certificate was revoked

The first octet contains a nmachi ne-readabl e code that denotes the
reason for the revocation:

0 - No reason specified (key revocations or cert revocations)
1 - Key is superseded (key revocations)

2 - Key material has been conpron sed (key revocations)

3 - Key is retired and no | onger used (key revocations)

32 - User IDinformation is no longer valid (cert revocations)

100-110 - Private Use

Fol I owi ng the revocation code is a string of octets that gives

i nformation about the Reason for Revocation in human-readabl e form
(UTF-8). The string may be null, that is, of zero length. The

I ength of the subpacket is the Iength of the reason string plus one.
An i npl enentation SHOULD i npl ement this subpacket, include it in al
revocation signatures, and interpret revocations appropriately.
There are inportant semantic differences between the reasons, and
there are thus inportant reasons for revoking signatures.

If a key has been revoked because of a conprom se, all signatures
created by that key are suspect. However, if it was nerely
superseded or retired, old signatures are still valid. If the
revoked signature is the self-signature for certifying a User ID, a
revocati on denotes that that user nane is no longer in use. Such a
revocation SHOULD i nclude a 0x20 code

Note that any signature nay be revoked, including a certification on
sone other person’s key. There are many good reasons for revoking a
certification signature, such as the case where the keyhol der | eaves
the enploy of a business with an email address. A revoked
certification is no longer a part of validity calcul ations.

Call as, et al St andards Track [Page 35]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.24. Features
(N octets of flags)

The Feat ures subpacket denotes whi ch advanced QpenPGP features a
user’s inplenentation supports. This is so that as features are
added to OpenPGP that cannot be backwards-conpati ble, a user can
state that they can use that feature. The flags are single bits that
indicate that a given feature is supported.

Thi s subpacket is simlar to a preferences subpacket, and only
appears in a self-signature.

An inplementati on SHOULD NOT use a feature |listed when sending to a
user who does not state that they can use it.

Defined features are as foll ows:
First octet:
0x01 - Modification Detection (packets 18 and 19)

If an inplementation inplenents any of the defined features, it
SHOULD i npl enent the Features subpacket, too.

An inplementation may freely infer features fromother suitable
i mpl enent at i on- dependent nechani sns.

5.2.3.25. Signature Target
(1 octet public-key algorithm 1 octet hash algorithm N octets hash)

Thi s subpacket identifies a specific target signature to which a
signature refers. For revocation signatures, this subpacket

provi des explicit designation of which signature is being revoked.
For a third-party or tinestanp signature, this designates what
signature is signed. Al argunents are an identifier of that target
si gnature.

The N octets of hash data MUST be the size of the hash of the

signature. For exanple, a target signature with a SHA-1 hash MJST
have 20 octets of hash data.

Call as, et al St andards Track [Page 36]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.26. Enbedded Signature
(1 signature packet body)

Thi s subpacket contains a conplete Signature packet body as
specified in Section 5.2 above. It is useful when one signature
needs to refer to, or be incorporated in, another signature.

5.2.4. Conputing Signatures

Al'l signatures are formed by producing a hash over the signature
data, and then using the resulting hash in the signature algorithm

For binary docunent signatures (type 0x00), the docunent data is
hashed directly. For text docunent signatures (type 0x01l), the
docunent is canonicalized by converting line endings to <CR><LF>,
and the resulting data is hashed.

When a signature is nade over a key, the hash data starts with the
octet 0x99, followed by a two-octet |ength of the key, and then body
of the key packet. (Note that this is an old-style packet header for
a key packet with two-octet length.) A subkey binding signature
(type 0x18) or primary key binding signature (type 0x19) then hashes
t he subkey using the sane format as the main key (al so using 0x99 as
the first octet). Key revocation signatures (types 0x20 and 0x28)
hash only the key being revoked.

A certification signature (type 0x10 through 0x13) hashes the User

I D being bound to the key into the hash context after the above
data. A V3 certification hashes the contents of the User 1D or
attribute packet packet, w thout any header. A V4 certification
hashes the constant O0xB4 for User ID certifications or the constant
OxD1 for User Attribute certifications, followed by a four-octet
nunber giving the length of the User I D or User Attribute data, and
then the User ID or User Attribute data.

When a signature is nade over a Signature packet (type 0x50), the
hash data starts with the octet 0x88, followed by the four-octet

I ength of the signature, and then the body of the Signature packet.
(Note that this is an old-style packet header for a Signature packet
with the length-of-length set to zero.) The unhashed subpacket data
of the Signature packet being hashed is not included in the hash, and
t he unhashed subpacket data length value is set to zero.

Once the data body is hashed, then a trailer is hashed. A V3
signature hashes five octets of the packet body, starting fromthe
signature type field. This data is the signature type, followed by
the four-octet signature tinme. A V4 signature hashes the packet body

Call as, et al St andards Track [Page 37]

RFC 4880 OpenPGP Message For mat Novenber 2007

starting fromits first field, the version nunber, through the end
of the hashed subpacket data. Thus, the fields hashed are the
signature version, the signature type, the public-key algorithm the
hash al gorithm the hashed subpacket |ength, and the hashed
subpacket body.

V4 signatures also hash in a final trailer of six octets: the
version of the Signature packet, i.e., 0x04; OxFF; and a four-octet,
bi g- endi an nunber that is the length of the hashed data fromthe

Si gnature packet (note that this nunber does not include these fina
Si X octets).

After all this has been hashed in a single hash context, the
resulting hash field is used in the signature al gorithmand pl aced
at the end of the Signature packet.

5.2.4.1. Subpacket Hints

It is certainly possible for a signature to contain conflicting

i nformati on in subpackets. For exanple, a sighature nmay contain
multiple copies of a preference or multiple expiration tines. In
nost cases, an inplenentati on SHOULD use the | ast subpacket in the
signature, but MAY use any conflict resolution schene that nakes
nore sense. Please note that we are intentionally |eaving conflict
resolution to the inplenenter; nost conflicts are sinply syntax
errors, and the w shy-washy | anguage here allows a receiver to be
generous in what they accept, while putting pressure on a creator to
be stingy in what they generate.

Sonme apparent conflicts may actually make sense -- for exanple,
suppose a keyhol der has a V3 key and a V4 key that share the sane
RSA key naterial. Either of these keys can verify a signature

created by the other, and it may be reasonable for a signhature to
contain an issuer subpacket for each key, as a way of explicitly
tying those keys to the signature.

5.3. Symmetric-Key Encrypted Session Key Packets (Tag 3)

The Synmetric-Key Encrypted Session Key packet holds the
symretric-key encryption of a session key used to encrypt a nessage.
Zero or nore Public-Key Encrypted Session Key packets and/or
Synmmetri c- Key Encrypted Session Key packets may precede a
Symretrically Encrypted Data packet that holds an encrypted nessage.
The message is encrypted with a session key, and the session key is
itself encrypted and stored in the Encrypted Session Key packet or
the Synmetric-Key Encrypted Session Key packet.

Call as, et al St andards Track [Page 38]

RFC 4880 OpenPGP Message For mat Novenber 2007

If the Symmetrically Encrypted Data packet is preceded by one or
nmore Symmretric-Key Encrypted Session Key packets, each specifies a
passphrase that may be used to decrypt the nmessage. This allows a
nmessage to be encrypted to a nunber of public keys, and also to one
or nore passphrases. This packet type is new and is not generated
by PGP 2.x or PGP 5.0.

The body of this packet consists of:

- A one-octet version number. The only currently defined version
is 4.

- A one-octet nunmber describing the symmetric al gorithm used.
- A string-to-key (S2K) specifier, length as defined above.

- Optionally, the encrypted session key itself, which is decrypted
with the string-to-key object.

If the encrypted session key is not present (which can be detected
on the basis of packet length and S2K specifier size), then the S2K
al gorithm applied to the passphrase produces the session key for
decrypting the file, using the symetric cipher algorithmfromthe
Synmetri c- Key Encrypted Session Key packet.

If the encrypted session key is present, the result of applying the
S2K al gorithmto the passphrase is used to decrypt just that
encrypted session key field, using CFB node with an IV of all zeros.
The decryption result consists of a one-octet algorithmidentifier
that specifies the symetric-key encryption algorithmused to
encrypt the following Symmetrically Encrypted Data packet, followed
by the session key octets thensel ves.

Not e: because an all-zero IV is used for this decryption, the S2K
specifier MJST use a salt value, either a Salted S2K or an
Iterated-Salted S2K. The salt value will ensure that the decryption
key is not repeated even if the passphrase is reused.

5.4. One-Pass Signature Packets (Tag 4)

The One- Pass Signature packet precedes the signed data and contains
enough information to allow the receiver to begin cal culating any
hashes needed to verify the signature. |t allows the Signature
packet to be placed at the end of the nessage, so that the signer
can conpute the entire signed nessage i n one pass.

A One-Pass Signature does not interoperate with PGP 2.6.x or
earlier.

Call as, et al St andards Track [Page 39]

RFC 4880 OpenPGP Message For mat Novenber 2007

The body of this packet consists of:
- A one-octet version nunber. The current version is 3.

- A one-octet signature type. Signature types are described in
Section 5.2.1.

- A one-octet nunber describing the hash al gorithm used.

- A one-octet nunber describing the public-key algorithm used.

An ei ght-octet nunber holding the Key ID of the signing key.

- A one-octet nunmber holding a flag showi ng whether the signature
is nested. A zero value indicates that the next packet is
anot her One-Pass Signature packet that describes another
signature to be applied to the sanme nmessage dat a.

Note that if a nessage contains nore than one one-pass signature,
then the Signature packets bracket the nmessage; that is, the first
Si gnature packet after the nessage corresponds to the | ast one-pass
packet and the final Signature packet corresponds to the first

one- pass packet.

5.5. Key Material Packet
A key material packet contains all the information about a public or
private key. There are four variants of this packet type, and two
maj or versions. Consequently, this section is conplex.

5.5.1. Key Packet Variants

5.5.1.1. Public-Key Packet (Tag 6)

A Public-Key packet starts a series of packets that forms an CpenPGP
key (sonetines called an OpenPGP certificate).

5.5.1.2. Public-Subkey Packet (Tag 14)

A Publi c- Subkey packet (tag 14) has exactly the sane format as a
Publ i c- Key packet, but denotes a subkey. One or nore subkeys may be
associated with a top-level key. By convention, the top-Ilevel key
provi des signature services, and the subkeys provide encryption
servi ces

Note: in PGP 2.6.x, tag 14 was intended to indicate a coment

packet. This tag was selected for reuse because no previous version
of PGP ever enitted coment packets but they did properly ignore

Call as, et al St andards Track [Page 40]

RFC 4880 OpenPGP Message For mat Novenber 2007

them Public-Subkey packets are ignored by PGP 2.6.x and do not
cause it to fail, providing a limted degree of backward
conpatibility.
5.5.1.3. Secret-Key Packet (Tag 5)
A Secret-Key packet contains all the information that is found in a
Publ i c- Key packet, including the public-key material, but also
i ncludes the secret-key material after all the public-key fields.
5.5.1.4. Secret-Subkey Packet (Tag 7)

A Secret-Subkey packet (tag 7) is the subkey anal og of the Secret
Key packet and has exactly the sane format.

5.5.2. Public-Key Packet Formats
There are two versions of key-material packets. Version 3 packets
were first generated by PGP 2.6. Version 4 keys first appeared in
PGP 5.0 and are the preferred key version for QOpenPGP.
QpenPGP i npl ement ati ons MJUST create keys with version 4 format. V3
keys are deprecated; an inplementation MIJST NOT generate a V3 key,
but MAY accept it.
A version 3 public key or public-subkey packet contains:

- A one-octet version nunmber (3).

- A four-octet nunber denoting the tinme that the key was created.

- A two-octet nunmber denoting the time in days that this key is
valid. If this nunmber is zero, then it does not expire.

- A one-octet nunmber denoting the public-key algorithmof this key.
- A series of nultiprecision integers conprising the key nateri al
- anultiprecision integer (MPl) of RSA public nodulus n
- an MPI of RSA public encryption exponent e.
V3 keys are deprecated. They contain three weaknesses. First, it is
relatively easy to construct a V3 key that has the sane Key ID as any
ot her key because the Key IDis sinply the low 64 bits of the public
nmodul us. Secondly, because the fingerprint of a V3 key hashes the

key material, but not its length, there is an increased opportunity
for fingerprint collisions. Third, there are weaknesses in the M5

Call as, et al St andards Track [Page 41]

RFC 4880 OpenPGP Message For mat Novenber 2007
hash al gorithmthat nake devel opers prefer other algorithns. See
bel ow for a fuller discussion of Key |IDs and fingerprints.

V2 keys are identical to the deprecated V3 keys except for the
versi on nunber. An inplenmentation MIUST NOT generate them and NMAY
accept or reject themas it sees fit.
The version 4 format is simlar to the version 3 format except for
the absence of a validity period. This has been noved to the
Signature packet. In addition, fingerprints of version 4 keys are
calculated differently fromversion 3 keys, as described in the
section "Enhanced Key Fornats".
A version 4 packet contains:

- A one-octet version nunber (4).

- A four-octet nunber denoting the tinme that the key was created.

- A one-octet nunber denoting the public-key algorithmof this key.

- A series of nultiprecision integers conprising the key materi al
This algorithmspecific portion is:

Al gorithm Specific Fields for RSA public keys:
- multiprecision integer (MPI) of RSA public nodulus n;
- MPI of RSA public encryption exponent e.
Al gorithm Specific Fields for DSA public keys:
- MPI of DSA prinme p;
- MPI of DSA group order q (q is a prine divisor of p-1);
- MPI of DSA group generator g;

- MPI of DSA public-key value y (= g**x nod p where x
is secret).

Al gorithm Specific Fields for Elgamal public keys:
- MPI of Elgamal prinme p;

- MPI of Elganmal group generator g;

Call as, et al St andards Track [Page 42]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.5.3.

The
Publ

- MPI of Elganal public key value y (= g**x nod p where x
is secret).

Secret - Key Packet Formats

Secret-Key and Secr et - Subkey packets contain all the data of the
i c- Key and Public- Subkey packets, with additional algorithm

specific secret-key data appended, usually in encrypted form

The

Cal | as,

packet contains:
A Public-Key or Public-Subkey packet, as described above.

One octet indicating string-to-key usage conventions. Zero

i ndi cates that the secret-key data is not encrypted. 255 or 254
indicates that a string-to-key specifier is being given. Any
other value is a symetric-key encryption algorithmidentifier

[Optional] If string-to-key usage octet was 255 or 254, a one-
octet symretric encryption algorithm

[Optional] If string-to-key usage octet was 255 or 254, a
string-to-key specifier. The length of the string-to-key
specifier is inplied by its type, as described above.

[Optional] If secret data is encrypted (string-to-key usage octet
not zero), an Initial Vector (1V) of the same length as the
ci pher’s bl ock size.

Plain or encrypted nultiprecision integers conprising the secret
key data. These algorithmspecific fields are as described
bel ow.

If the string-to-key usage octet is zero or 255, then a two-octet
checksum of the plaintext of the algorithmspecific portion (sum
of all octets, nod 65536). |If the string-to-key usage octet was
254, then a 20-octet SHA-1 hash of the plaintext of the

al gorithmspecific portion. This checksumor hash is encrypted
together with the algorithmspecific fields (if string-to-key
usage octet is not zero). Note that for all other values, a

two- oct et checksumis required.

Al gorithm Specific Fields for RSA secret keys:
- nultiprecision integer (MPl) of RSA secret exponent d.

- MPI of RSA secret prime value p.

et al St andards Track [Page 43]

RFC 4880 OpenPGP Message For mat Novenber 2007

- MPlI of RSA secret prinme value q (p < q).

- MPI of u, the multiplicative inverse of p, nod q.
Al gorithm Specific Fields for DSA secret keys:

- MPI of DSA secret exponent X.

Al gorithm Specific Fields for Elgamal secret keys:
- MPI of Elganal secret exponent x.

Secret MPI val ues can be encrypted using a passphrase. |If a string-
to-key specifier is given, that describes the algorithmfor
converting the passphrase to a key, else a sinple MD5 hash of the
passphrase is used. |Inplenentations MJST use a string-to-key
specifier; the sinple hash is for backward conpatibility and is
deprecat ed, though inplenentations MAY continue to use existing
private keys in the old format. The cipher for encrypting the MPIs
is specified in the Secret-Key packet.

Encryption/decryption of the secret data is done in CFB node using
the key created fromthe passphrase and the Initial Vector fromthe
packet. A different node is used with V3 keys (which are only RSA)
than with other key formats. Wth V3 keys, the MPI bit count prefix
(i.e., the first two octets) is not encrypted. Only the MPI non-
prefix data is encrypted. Furthernore, the CFB state is
resynchroni zed at the begi nning of each new MPI val ue, so that the
CFB bl ock boundary is aligned with the start of the MPI data.

Wth V4 keys, a sinpler nethod is used. Al secret MPI values are
encrypted in CFB node, including the MPI bitcount prefix.

The two-octet checksumthat follows the algorithmspecific portion is
the al gebraic sum nod 65536, of the plaintext of all the algorithm
specific octets (including MPI prefix and data). Wth V3 keys, the
checksumis stored in the clear. Wth V4 keys, the checksumis
encrypted like the algorithmspecific data. This value is used to
check that the passphrase was correct. However, this checksumis
deprecated; an inplenentation SHOULD NOT use it, but should rather
use the SHA-1 hash denoted with a usage octet of 254. The reason for
this is that there are sonme attacks that involve undetectably

nmodi fyi ng the secret key.

Call as, et al St andards Track [Page 44]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.6. Conpressed Data Packet (Tag 8)

The Conpressed Data packet contains conpressed data. Typically, this
packet is found as the contents of an encrypted packet, or follow ng
a Signature or One-Pass Signature packet, and contains a literal data
packet .

The body of this packet consists of:
- One octet that gives the algorithmused to conpress the packet.
- Conpressed data, which nakes up the renmai nder of the packet.

A Conpressed Data Packet’s body contains an bl ock that conpresses
sonme set of packets. See section "Packet Conposition" for details on
how nmessages are forned

ZI P-conpressed packets are conpressed with raw RFC 1951 [RFC1951]
DEFLATE bl ocks. Note that PGP V2.6 uses 13 bits of conpression. |If
an inplenentation uses nore bits of conpression, PGP V2.6 cannot
deconpress it.

ZLI B-conpressed packets are conpressed with RFC 1950 [RFC1950] ZLI B-
styl e bl ocks.

BZi p2- conpressed packets are conpressed using the BZi p2 [BZ2]
al gorithm

5.7. Symetrically Encrypted Data Packet (Tag 9)

The Symmetrically Encrypted Data packet contains data encrypted with
a synmetric-key algorithm Wen it has been decrypted, it contains
other packets (usually a literal data packet or conpressed data
packet, but in theory other Symmetrically Encrypted Data packets or
sequences of packets that form whol e OpenPGP nessages).

The body of this packet consists of:

- Encrypted data, the output of the selected symetric-key cipher
operating in QpenPG” s variant of G pher Feedback (CFB) node.

The synmmetric ci pher used may be specified in a Public-Key or
Symretri c- Key Encrypted Session Key packet that precedes the

Symretrically Encrypted Data packet. In that case, the cipher
algorithmoctet is prefixed to the session key before it is
encrypted. |If no packets of these types precede the encrypted data,

the I1DEA algorithmis used with the session key cal cul ated as the M5
hash of the passphrase, though this use is deprecated.

Call as, et al St andards Track [Page 45]

RFC 4880 OpenPGP Message For mat Novenber 2007

The data is encrypted in CFB node, with a CFB shift size equal to the
cipher’s block size. The Initial Vector (IV) is specified as al
zeros. Instead of using an IV, OpenPGP prefixes a string of length
equal to the block size of the cipher plus two to the data before it
is encrypted. The first block-size octets (for exanple, 8 octets for
a 64-bit block Iength) are random and the following two octets are
copies of the last two octets of the IV. For exanple, in an 8-octet
bl ock, octet 9 is a repeat of octet 7, and octet 10 is a repeat of
octet 8. In a cipher of length 16, octet 17 is a repeat of octet 15
and octet 18 is a repeat of octet 16. As a pedantic clarification,
in both these exanples, we consider the first octet to be numbered 1

After encrypting the first block-size-plus-two octets, the CFB state
is resynchroni zed. The | ast bl ock-size octets of ciphertext are
passed through the ci pher and the bl ock boundary is reset.
The repetition of 16 bits in the random data prefixed to the nessage
all ows the receiver to i medi ately check whether the session key is
incorrect. See the "Security Considerations" section for hints on
the proper use of this "quick check".

5.8. Marker Packet ((Qbsolete Literal Packet) (Tag 10)

An experinmental version of PGP used this packet as the Litera

packet, but no rel eased version of PGP generated Literal packets with
this tag. Wth PGP 5.x, this packet has been reassigned and is
reserved for use as the Marker packet.

The body of this packet consists of:

- The three octets 0x50, 0x47, 0x50 (which spell "PG" in UTF-8).
Such a packet MJST be ignored when received. It may be placed at the
begi nning of a nessage that uses features not available in PGP 2.6.x
in order to cause that version to report that newer software is
necessary to process the nessage.

5.9. Literal Data Packet (Tag 11)

A Literal Data packet contains the body of a nessage; data that is
not to be further interpreted.

The body of this packet consists of:

- A one-octet field that describes how the data is formatted.

Call as, et al St andards Track [Page 46]

RFC 4880 OpenPGP Message For mat Novenber 2007

If it is a’'b (0x62), then the Literal packet contains binary data.
If it isa’'t’ (0x74), then it contains text data, and thus nmay need
line ends converted to local form or other text-node changes. The

tag 'u’ (0x75) nmeans the sane as 't’, but also indicates that

i npl ement ati on believes that the literal data contains UTF-8 text.

Early versions of PGP also defined a value of "I’ as a 'local’ nopde
for machi ne-1ocal conversions. RFC 1991 [RFC1991] incorrectly stated
this local node flag as '1' (ASCI| nuneral one). Both of these |oca
nodes are deprecated

- File nane as a string (one-octet length, followed by a file
nane). This nmay be a zero-length string. Commonly, if the
source of the encrypted data is a file, this will be the nane of
the encrypted file. An inplenentation MAY consider the file nane
in the Literal packet to be a nore authoritative nane than the
actual file nane.

If the special nane " _CONSOLE" is used, the nessage is considered to
be "for your eyes only". This advises that the nessage data is
unusual |y sensitive, and the receiving programshould process it nore
carefully, perhaps avoiding storing the received data to disk, for
exanpl e.

- A four-octet nunber that indicates a date associated with the
literal data. Comonly, the date might be the nodification date
of a file, or the time the packet was created, or a zero that
i ndi cates no specific tine.

- The renmi nder of the packet is literal data.

Text data is stored with <CR><LF> text endings (i.e., network-
normal |ine endings). These should be converted to native line
endi ngs by the receiving software.

5.10. Trust Packet (Tag 12)

The Trust packet is used only within keyrings and is not normally
exported. Trust packets contain data that record the user’s

speci fications of which key holders are trustworthy introducers,
along with other information that inplenenting software uses for
trust information. The format of Trust packets is defined by a given
i mpl enent ati on.

Trust packets SHOULD NOT be enmitted to output streans that are

transferred to other users, and they SHOULD be ignored on any i nput
other than local keyring files.

Call as, et al St andards Track [Page 47]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.11. User |ID Packet (Tag 13)

A User | D packet consists of UTF-8 text that is intended to represent
the nane and email address of the key holder. By convention, it

i ncl udes an RFC 2822 [RFC2822] mail nane-addr, but there are no
restrictions on its content. The packet length in the header
specifies the length of the User ID

5.12. User Attribute Packet (Tag 17)

The User Attribute packet is a variation of the User ID packet. It
is capabl e of storing nore types of data than the User |D packet,
which is Iimted to text. Like the User |ID packet, a User Attribute
packet may be certified by the key owner ("self-signed") or any other
key owner who cares to certify it. Except as noted, a User Attribute
packet may be used anywhere that a User |D packet may be used

While User Attribute packets are not a required part of the OpenPGP
standard, inplenmentations SHOULD provi de at |east enough
conmpatibility to properly handle a certification signature on the
User Attribute packet. A sinple way to do this is by treating the
User Attribute packet as a User |ID packet with opaque contents, but
an inplenmentati on may use any nethod desired.

The User Attribute packet is nade up of one or nore attribute
subpackets. Each subpacket consists of a subpacket header and a
body. The header consists of:

- the subpacket length (1, 2, or 5 octets)

- the subpacket type (1 octet)
and is foll owed by the subpacket specific data.
The only currently defined subpacket type is 1, signifying an image.
An i npl enentati on SHOULD i gnore any subpacket of a type that it does
not recogni ze. Subpacket types 100 t hrough 110 are reserved for
private or experimental use.

5.12.1. The Image Attribute Subpacket

The I mage Attribute subpacket is used to encode an inage, presunably
(but not required to be) that of the key owner

The I mage Attribute subpacket begins with an i mage header. The first
two octets of the inage header contain the Iength of the inmage
header. Note that unlike other nulti-octet nunerical values in this
docunent, due to a historical accident this value is encoded as a

Call as, et al St andards Track [Page 48]

RFC 4880 OpenPGP Message For mat Novenber 2007

little-endian nunber. The inage header length is followed by a
single octet for the inage header version. The only currently
defined version of the inmage header is 1, which is a 16-octet image
header. The first three octets of a version 1 inmage header are thus
0x10, 0x00, 0x01

The fourth octet of a version 1 inmage header designates the encoding
format of the image. The only currently defined encoding format is
the value 1 to indicate JPEG |mage format types 100 through 110 are
reserved for private or experinental use. The rest of the version 1
i mage header is made up of 12 reserved octets, all of which MIST be
set to O.

The rest of the image subpacket contains the inmage itself. As the
only currently defined image type is JPEG the image is encoded in
the JPEG File Interchange Format (JFIF), a standard file format for
JPEG i mages [JFI F].

An inplenentation MAY try to determine the type of an inage by

exanmi nation of the image data if it is unable to handle a particul ar
version of the inmage header or if a specified encoding format val ue
i s not recognized.

5.13. Sym Encrypted Integrity Protected Data Packet (Tag 18)

The Synmmetrically Encrypted Integrity Protected Data packet is a
variant of the Symmetrically Encrypted Data packet. It is a new
feature created for QpenPGP that addresses the problem of detecting a
nmodi fication to encrypted data. It is used in conbination with a
Modi fi cati on Detection Code packet.

There is a corresponding feature in the features Signature subpacket
that denotes that an inplenmentation can properly use this packet
type. An inplenentation MJST support decrypting these packets and
SHOULD prefer generating themto the older Symmetrically Encrypted
Dat a packet when possible. Since this data packet protects against
nodi fication attacks, this standard encourages its proliferation
Whi | e bl anket adoption of this data packet woul d create
interoperability problens, rapid adoption is neverthel ess inportant.
An i nmpl enentati on SHOULD specifically denote support for this packet,
but it MAY infer it from other nechanisns.

For exanple, an inplenentation mght infer fromthe use of a cipher
such as Advanced Encryption Standard (AES) or Twofish that a user
supports this feature. It might place in the unhashed portion of
anot her user’s key signature a Features subpacket. It might also
present a user with an opportunity to regenerate their own self-
signature with a Features subpacket.

Call as, et al St andards Track [Page 49]

RFC 4880 OpenPGP Message For mat Novenber 2007

Thi s packet contains data encrypted with a symretric-key al gorithm
and protected against nodification by the SHA-1 hash algorithm Wen
it has been decrypted, it will typically contain other packets (often
a Literal Data packet or Conpressed Data packet). The |last decrypted
packet in this packet’s payl oad MIST be a Modification Detection Code
packet .

The body of this packet consists of:

- A one-octet version nunmber. The only currently defined value is
1

- Encrypted data, the output of the selected symmetric-key cipher
operating in C pher Feedback node with shift anount equal to the
bl ock size of the cipher (CFB-n where n is the block size).

The synmetric ci pher used MIST be specified in a Public-Key or
Synmmetri c- Key Encrypted Session Key packet that precedes the
Symretrically Encrypted Data packet. 1In either case, the cipher
algorithmoctet is prefixed to the session key before it is
encrypt ed.

The data is encrypted in CFB node, with a CFB shift size equal to the
cipher’s block size. The Initial Vector (IV) is specified as al
zeros. |Instead of using an 1V, OpenPGP prefixes an octet string to
the data before it is encrypted. The length of the octet string
equal s the block size of the cipher in octets, plus two. The first
octets in the group, of length equal to the bl ock size of the cipher,
are random the last two octets are each copies of their 2nd
preceding octet. For exanple, with a cipher whose bl ock size is 128
bits or 16 octets, the prefix data will contain 16 random octets,
then two nore octets, which are copies of the 15th and 16th octets,
respectively. Unlike the Symmetrically Encrypted Data Packet, no
speci al CFB resynchroni zation is done after encrypting this prefix
data. See "OpenPGP CFB Mbde" bel ow for nore details.

The repetition of 16 bits in the random data prefixed to the nessage
allows the receiver to i medi ately check whether the session key is
i ncorrect.

The plaintext of the data to be encrypted is passed through the SHA-1
hash function, and the result of the hash is appended to the
plaintext in a Mdification Detection Code packet. The input to the
hash function includes the prefix data described above; it includes
all of the plaintext, and then also includes two octets of val ues
0xD3, 0x14. These represent the encoding of a Mdification Detection
Code packet tag and length field of 20 octets.

Call as, et al St andards Track [Page 50]

RFC 4880 OpenPGP Message For mat Novenber 2007

The resulting hash value is stored in a Mdification Detection Code
(MDC) packet, which MJST use the two octet encoding just given to
represent its tag and length field. The body of the MDC packet is
the 20-octet output of the SHA-1 hash

The Modification Detection Code packet is appended to the plaintext
and encrypted along with the plaintext using the sane CFB context.

During decryption, the plaintext data should be hashed with SHA-1
including the prefix data as well as the packet tag and length field
of the Modification Detection Code packet. The body of the MDC
packet, upon decryption, is conpared with the result of the SHA-1
hash.

Any failure of the MDC indicates that the nmessage has been nodified
and MUST be treated as a security problem Failures include a
difference in the hash values, but also the absence of an MDC packet,
or an MDC packet in any position other than the end of the plaintext.
Any failure SHOULD be reported to the user

Not e: future designs of new versions of this packet shoul d consider
rol |l back attacks since it will be possible for an attacker to change
the version back to 1

NON- NORVATI VE EXPLANATI ON

The MDC system as packets 18 and 19 are called, were created to
provide an integrity mechanismthat is | ess strong than a
signature, yet stronger than bare CFB encryption

It is alimtation of CFB encryption that danmage to the ciphertext
will corrupt the affected cipher blocks and the bl ock follow ng.
Additionally, if data is renoved fromthe end of a CFB-encrypted
bl ock, that renoval is undetectable. (Note also that CBC node has
a simlar limtation, but data renoved fromthe front of the block
i s undetectable.)

The obvi ous way to protect or authenticate an encrypted block is
to digitally signit. However, many people do not wi sh to
habitually sign data, for a | arge nunber of reasons beyond the
scope of this document. Suffice it to say that nmany people
consi der properties such as deniability to be as val uable as
integrity.

OpenPCP addresses this desire to have nore security than raw
encryption and yet preserve deniability with the MDC system An
MDC is intentionally not a MAC. Its nane was not sel ected by
accident. It is analogous to a checksum

Call as, et al St andards Track [Page 51]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.

Despite the fact that it is a relatively nodest system it has
proved itself in the real world. It is an effective defense to
several attacks that have surfaced since it has been created. It
has net its nodest goals admirably.

Consequently, because it is a nbdest security system it has
nodest requirements on the hash function(s) it enploys. It does
not rely on a hash function being collision-free, it relies on a
hash function being one-way. |If a forger, Frank, wi shes to send
Alice a (digitally) unsigned nessage that says, "I’'ve always
secretly |l oved you, signed Bob", it is far easier for himto
construct a new nessage than it is to nodify anything intercepted
fromBob. (Note also that if Bob wi shes to communicate secretly
with Alice, but without authentication or identification and with
a threat nodel that includes forgers, he has a problemthat
transcends nere cryptography.)

Note al so that unlike nearly every other QpenPGP subsystem there
are no paraneters in the MDC system It hard-defines SHA-1 as its
hash function. This is not an accident. It is an intentiona

choi ce to avoid downgrade and cross-grade attacks while naking a
simple, fast system (A downgrade attack would be an attack that
repl aced SHA-256 with SHA-1, for exanple. A cross-grade attack
woul d replace SHA-1 with anot her 160-bit hash, such as Rl PE-

MDY/ 160, for exanple.)

However, given the present state of hash function cryptanal ysis
and cryptography, it may be desirable to upgrade the MDC systemto
a new hash function. See Section 13.11 in the "I ANA
Consi der ati ons" for guidance.

14. Modification Detection Code Packet (Tag 19)

The Modification Detection Code packet contains a SHA-1 hash of

pl ai ntext data, which is used to detect nessage nodification. It is
only used with a Symmetrically Encrypted Integrity Protected Data
packet. The Modification Detection Code packet MJST be the | ast
packet in the plaintext data that is encrypted in the Symmetrically
Encrypted Integrity Protected Data packet, and MJST appear in no

ot her pl ace.

A Modification Detection Code packet MUST have a length of 20 octets.

Call as, et al St andards Track [Page 52]

RFC 4880 OpenPGP Message For mat Novenber 2007

The body of this packet consists of:

- A 20-octet SHA-1 hash of the precedi ng plaintext data of the
Symretrically Encrypted Integrity Protected Data packet,
including prefix data, the tag octet, and length octet of the
Modi fi cati on Detection Code packet.

Note that the Modification Detection Code packet MJST al ways use a
new format encodi ng of the packet tag, and a one-octet encodi ng of

t he packet length. The reason for this is that the hashing rules for
nmodi fi cation detection include a one-octet tag and one-octet |ength
in the data hash. Wile this is a bit restrictive, it reduces

conpl exity.

6. Radi x-64 Conversi ons

As stated in the introduction, OpenPG s underlying native
representation for objects is a streamof arbitrary octets, and sone
systens desire these objects to be i mmune to damage caused by
character set translation, data conversions, etc.

In principle, any printable encoding schene that net the requirenments
of the unsafe channel would suffice, since it would not change the
underlying binary bit streans of the native OpenPGP data structures
The QpenPGP standard specifies one such printable encoding schene to
ensure interoperability.

OpenPGP’ s Radi x- 64 encoding i s conposed of two parts: a base64
encodi ng of the binary data and a checksum The base64 encoding is
identical to the M M base64 content-transfer-encodi ng [RFC2045].

The checksumis a 24-bit Cyclic Redundancy Check (CRC) converted to
four characters of radix-64 encoding by the same M ME base64
transformati on, preceded by an equal sign (=). The CRC is conputed
by using the generator 0x864CFB and an initialization of 0xB704CE
The accumul ation is done on the data before it is converted to
radi x- 64, rather than on the converted data. A sanple inplenentation
of this algorithmis in the next section

The checksumwith its | eading equal sign MAY appear on the first line
after the base64 encoded dat a.

Rationale for CRC-24: The size of 24 bits fits evenly into printable

base64. The nonzero initialization can detect nbre errors than a
zero initialization.

Call as, et al St andards Track [Page 53]

RFC 4880 OpenPGP Message For mat Novenber 2007

6.1. An Inplenentation of the CRC-24 in "C'

#define CRC24_I NI T 0xB704CEL
#define CRC24_PCOLY 0x1864CFBL

typedef |ong crc24;
crc24 crc_octets(unsigned char *octets, size_ t len)

{
crc24 crc = CRC24_INT;
int i;
while (len--) {
crc "= (*octets++) << 16;
for (i =0; i <8; i++) {
crc <<= 1;
if (crc & 0x1000000)
crc M= CRC24_PQLY;
}
}
return crc & OxXFFFFFFL;
}

6.2. Forming ASCI| Arnor

When OpenPGP encodes data into ASCII Arnor, it puts specific headers
around t he Radi x-64 encoded data, so OpenPGP can reconstruct the data
later. An OpenPGP inplenentati on MAY use ASCI| arnor to protect raw
bi nary data. OpenPGP inforns the user what kind of data is encoded
in the ASCI1 arnor through the use of the headers.
Concatenating the following data creates ASCI| Arnor:

- An Arnor Header Line, appropriate for the type of data

- Arnor Headers

- A blank (zero-length, or containing only whitespace) line

- The ASCII|-Arnored data

- An Arnor Checksum

- The Arnor Tail, which depends on the Arnor Header Line
An Arnmor Header Line consists of the appropriate header |ine text
surrounded by five (5) dashes ('-', 0x2D) on either side of the
header line text. The header line text is chosen based upon the type

of data that is being encoded in Arnor, and how it is being encoded.
Header line texts include the follow ng strings:

Call as, et al St andards Track [Page 54]

RFC 4880 OpenPGP Message For mat Novenber 2007

BEG N PGP MESSACE
Used for signed, encrypted, or conpressed files.

BEG N PGP PUBLI C KEY BLOCK
Used for arnoring public keys.

BEG N PGP PRI VATE KEY BLOCK
Used for arnmoring private keys.

BEGA N PGP MESSAGE, PART XY
Used for multi-part nmessages, where the arnor is split anmongst Y
parts, and this is the Xth part out of Y.

BEG N PGP MESSAGE, PART X
Used for multi-part nmessages, where this is the Xth part of an
unspeci fi ed nunmber of parts. Requires the MESSACGE-ID Arnor
Header to be used.

BEG N PGP S| GNATURE
Used for detached signatures, QpenPGP/ M ME signatures, and
cleartext signatures. Note that PGP 2.x uses BEG N PGP MESSAGE
for detached signatures.

Note that all these Arnor Header Lines are to consist of a conplete
line. That is to say, there is always a |line ending preceding the
starting five dashes, and follow ng the ending five dashes. The
header lines, therefore, MJST start at the beginning of a line, and
MUST NOT have text other than whitespace follow ng themon the sane
line. These line endings are considered a part of the Arnor Header
Line for the purposes of deternmning the content they delint. This
is particularly inportant when conputing a cleartext signature (see
bel ow) .

The Arnor Headers are pairs of strings that can give the user or the
recei ving OQpenPGP i npl enent ati on sonme i nformati on about how t o decode
or use the nessage. The Arnor Headers are a part of the arnor, not a
part of the nessage, and hence are not protected by any signatures
applied to the nessage.

The format of an Arnor Header is that of a key-value pair. A colon
(’:’ 0x38) and a single space (0x20) separate the key and val ue.
QpenPGP shoul d consider inproperly fornatted Arnor Headers to be
corruption of the ASCII Arnor. Unknown keys should be reported to
the user, but OpenPGP should continue to process the nessage.

Note that sonme transport nethods are sensitive to line length. Wile

there is alimt of 76 characters for the Radix-64 data (Section
6.3), thereis nolimt to the length of Arnor Headers. Care should

Call as, et al St andards Track [Page 55]

RFC 4880 OpenPGP Message For mat Novenber 2007

be taken that the Arnor Headers are short enough to survive
transport. One way to do this is to repeat an Arnor Header key
multiple times with different values for each so that no one line is
overly I ong.

Currently defined Arnor Header Keys are as foll ows:

Cal | as,

"Version", which states the QuenPGP i npl enmentati on and version
used to encode the nessage.

"Comment ", a user-defined comment. OpenPGP defines all text to
be in UTF-8. A comment nay be any UTF-8 string. However, the
whol e point of arnor